MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressply1mul Structured version   Visualization version   GIF version

Theorem ressply1mul 20401
Description: A restricted polynomial algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressply1.s 𝑆 = (Poly1𝑅)
ressply1.h 𝐻 = (𝑅s 𝑇)
ressply1.u 𝑈 = (Poly1𝐻)
ressply1.b 𝐵 = (Base‘𝑈)
ressply1.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressply1mul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem ressply1mul
StepHypRef Expression
1 eqid 2823 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 ressply1.h . . 3 𝐻 = (𝑅s 𝑇)
3 eqid 2823 . . 3 (1o mPoly 𝐻) = (1o mPoly 𝐻)
4 ressply1.u . . . 4 𝑈 = (Poly1𝐻)
5 eqid 2823 . . . 4 (PwSer1𝐻) = (PwSer1𝐻)
6 ressply1.b . . . 4 𝐵 = (Base‘𝑈)
74, 5, 6ply1bas 20365 . . 3 𝐵 = (Base‘(1o mPoly 𝐻))
8 1on 8111 . . . 4 1o ∈ On
98a1i 11 . . 3 (𝜑 → 1o ∈ On)
10 ressply1.2 . . 3 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 eqid 2823 . . 3 ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵)
121, 2, 3, 7, 9, 10, 11ressmplmul 20241 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r‘(1o mPoly 𝐻))𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌))
13 eqid 2823 . . . 4 (.r𝑈) = (.r𝑈)
144, 3, 13ply1mulr 20397 . . 3 (.r𝑈) = (.r‘(1o mPoly 𝐻))
1514oveqi 7171 . 2 (𝑋(.r𝑈)𝑌) = (𝑋(.r‘(1o mPoly 𝐻))𝑌)
16 ressply1.s . . . . 5 𝑆 = (Poly1𝑅)
17 eqid 2823 . . . . 5 (.r𝑆) = (.r𝑆)
1816, 1, 17ply1mulr 20397 . . . 4 (.r𝑆) = (.r‘(1o mPoly 𝑅))
196fvexi 6686 . . . . 5 𝐵 ∈ V
20 ressply1.p . . . . . 6 𝑃 = (𝑆s 𝐵)
2120, 17ressmulr 16627 . . . . 5 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
2219, 21ax-mp 5 . . . 4 (.r𝑆) = (.r𝑃)
23 eqid 2823 . . . . . 6 (.r‘(1o mPoly 𝑅)) = (.r‘(1o mPoly 𝑅))
2411, 23ressmulr 16627 . . . . 5 (𝐵 ∈ V → (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵)))
2519, 24ax-mp 5 . . . 4 (.r‘(1o mPoly 𝑅)) = (.r‘((1o mPoly 𝑅) ↾s 𝐵))
2618, 22, 253eqtr3i 2854 . . 3 (.r𝑃) = (.r‘((1o mPoly 𝑅) ↾s 𝐵))
2726oveqi 7171 . 2 (𝑋(.r𝑃)𝑌) = (𝑋(.r‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)
2812, 15, 273eqtr4g 2883 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  Oncon0 6193  cfv 6357  (class class class)co 7158  1oc1o 8097  Basecbs 16485  s cress 16486  .rcmulr 16568  SubRingcsubrg 19533   mPoly cmpl 20135  PwSer1cps1 20345  Poly1cpl1 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-seq 13373  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-ple 16587  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-subg 18278  df-mgp 19242  df-ring 19301  df-subrg 19535  df-psr 20138  df-mpl 20140  df-opsr 20142  df-psr1 20350  df-ply1 20352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator