MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressply1vsca Structured version   Visualization version   GIF version

Theorem ressply1vsca 20403
Description: A restricted power series algebra has the same scalar multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressply1.s 𝑆 = (Poly1𝑅)
ressply1.h 𝐻 = (𝑅s 𝑇)
ressply1.u 𝑈 = (Poly1𝐻)
ressply1.b 𝐵 = (Base‘𝑈)
ressply1.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.p 𝑃 = (𝑆s 𝐵)
Assertion
Ref Expression
ressply1vsca ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))

Proof of Theorem ressply1vsca
StepHypRef Expression
1 eqid 2824 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
2 ressply1.h . . 3 𝐻 = (𝑅s 𝑇)
3 eqid 2824 . . 3 (1o mPoly 𝐻) = (1o mPoly 𝐻)
4 ressply1.u . . . 4 𝑈 = (Poly1𝐻)
5 eqid 2824 . . . 4 (PwSer1𝐻) = (PwSer1𝐻)
6 ressply1.b . . . 4 𝐵 = (Base‘𝑈)
74, 5, 6ply1bas 20366 . . 3 𝐵 = (Base‘(1o mPoly 𝐻))
8 1on 8112 . . . 4 1o ∈ On
98a1i 11 . . 3 (𝜑 → 1o ∈ On)
10 ressply1.2 . . 3 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 eqid 2824 . . 3 ((1o mPoly 𝑅) ↾s 𝐵) = ((1o mPoly 𝑅) ↾s 𝐵)
121, 2, 3, 7, 9, 10, 11ressmplvsca 20243 . 2 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌))
13 eqid 2824 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
144, 3, 13ply1vsca 20397 . . 3 ( ·𝑠𝑈) = ( ·𝑠 ‘(1o mPoly 𝐻))
1514oveqi 7172 . 2 (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠 ‘(1o mPoly 𝐻))𝑌)
16 ressply1.s . . . . 5 𝑆 = (Poly1𝑅)
17 eqid 2824 . . . . 5 ( ·𝑠𝑆) = ( ·𝑠𝑆)
1816, 1, 17ply1vsca 20397 . . . 4 ( ·𝑠𝑆) = ( ·𝑠 ‘(1o mPoly 𝑅))
196fvexi 6687 . . . . 5 𝐵 ∈ V
20 ressply1.p . . . . . 6 𝑃 = (𝑆s 𝐵)
2120, 17ressvsca 16654 . . . . 5 (𝐵 ∈ V → ( ·𝑠𝑆) = ( ·𝑠𝑃))
2219, 21ax-mp 5 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑃)
23 eqid 2824 . . . . . 6 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘(1o mPoly 𝑅))
2411, 23ressvsca 16654 . . . . 5 (𝐵 ∈ V → ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵)))
2519, 24ax-mp 5 . . . 4 ( ·𝑠 ‘(1o mPoly 𝑅)) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2618, 22, 253eqtr3i 2855 . . 3 ( ·𝑠𝑃) = ( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))
2726oveqi 7172 . 2 (𝑋( ·𝑠𝑃)𝑌) = (𝑋( ·𝑠 ‘((1o mPoly 𝑅) ↾s 𝐵))𝑌)
2812, 15, 273eqtr4g 2884 1 ((𝜑 ∧ (𝑋𝑇𝑌𝐵)) → (𝑋( ·𝑠𝑈)𝑌) = (𝑋( ·𝑠𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  Oncon0 6194  cfv 6358  (class class class)co 7159  1oc1o 8098  Basecbs 16486  s cress 16487   ·𝑠 cvsca 16572  SubRingcsubrg 19534   mPoly cmpl 20136  PwSer1cps1 20346  Poly1cpl1 20348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-tset 16587  df-ple 16588  df-subg 18279  df-ring 19302  df-subrg 19536  df-psr 20139  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-ply1 20353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator