MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resspsrmul Structured version   Visualization version   GIF version

Theorem resspsrmul 20191
Description: A restricted power series algebra has the same multiplication operation. (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
resspsr.s 𝑆 = (𝐼 mPwSer 𝑅)
resspsr.h 𝐻 = (𝑅s 𝑇)
resspsr.u 𝑈 = (𝐼 mPwSer 𝐻)
resspsr.b 𝐵 = (Base‘𝑈)
resspsr.p 𝑃 = (𝑆s 𝐵)
resspsr.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
resspsrmul ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))

Proof of Theorem resspsrmul
Dummy variables 𝑥 𝑘 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmpsr 20135 . . . . . . . . . 10 Rel dom mPwSer
2 resspsr.u . . . . . . . . . 10 𝑈 = (𝐼 mPwSer 𝐻)
3 resspsr.b . . . . . . . . . 10 𝐵 = (Base‘𝑈)
41, 2, 3elbasov 16539 . . . . . . . . 9 (𝑋𝐵 → (𝐼 ∈ V ∧ 𝐻 ∈ V))
54ad2antrl 726 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐼 ∈ V ∧ 𝐻 ∈ V))
65simpld 497 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐼 ∈ V)
7 eqid 2821 . . . . . . . 8 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
87psrbaglefi 20146 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
96, 8sylan 582 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ∈ Fin)
10 resspsr.2 . . . . . . . . 9 (𝜑𝑇 ∈ (SubRing‘𝑅))
11 subrgsubg 19535 . . . . . . . . 9 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ∈ (SubGrp‘𝑅))
1210, 11syl 17 . . . . . . . 8 (𝜑𝑇 ∈ (SubGrp‘𝑅))
13 subgsubm 18295 . . . . . . . 8 (𝑇 ∈ (SubGrp‘𝑅) → 𝑇 ∈ (SubMnd‘𝑅))
1412, 13syl 17 . . . . . . 7 (𝜑𝑇 ∈ (SubMnd‘𝑅))
1514ad2antrr 724 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑇 ∈ (SubMnd‘𝑅))
1610ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 ∈ (SubRing‘𝑅))
17 eqid 2821 . . . . . . . . . . . 12 (Base‘𝐻) = (Base‘𝐻)
18 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
192, 17, 7, 3, 18psrelbas 20153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
2019adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
21 elrabi 3674 . . . . . . . . . 10 (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} → 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
22 ffvelrn 6843 . . . . . . . . . 10 ((𝑋:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻) ∧ 𝑥 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑋𝑥) ∈ (Base‘𝐻))
2320, 21, 22syl2an 597 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝐻))
24 resspsr.h . . . . . . . . . . 11 𝐻 = (𝑅s 𝑇)
2524subrgbas 19538 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 = (Base‘𝐻))
2616, 25syl 17 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑇 = (Base‘𝐻))
2723, 26eleqtrrd 2916 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑋𝑥) ∈ 𝑇)
28 simprr 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
292, 17, 7, 3, 28psrelbas 20153 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
3029ad2antrr 724 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑌:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝐻))
31 ssrab2 4055 . . . . . . . . . . 11 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ⊆ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
326ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝐼 ∈ V)
33 simplr 767 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
34 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
35 eqid 2821 . . . . . . . . . . . . 13 {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} = {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}
367, 35psrbagconcl 20147 . . . . . . . . . . . 12 ((𝐼 ∈ V ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3732, 33, 34, 36syl3anc 1367 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘})
3831, 37sseldi 3964 . . . . . . . . . 10 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3930, 38ffvelrnd 6846 . . . . . . . . 9 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝐻))
4039, 26eleqtrrd 2916 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ 𝑇)
41 eqid 2821 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
4241subrgmcl 19541 . . . . . . . 8 ((𝑇 ∈ (SubRing‘𝑅) ∧ (𝑋𝑥) ∈ 𝑇 ∧ (𝑌‘(𝑘f𝑥)) ∈ 𝑇) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4316, 27, 40, 42syl3anc 1367 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) ∈ 𝑇)
4443fmpttd 6873 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))):{𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}⟶𝑇)
459, 15, 44, 24gsumsubm 17993 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))))
4624, 41ressmulr 16619 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝐻))
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (.r𝑅) = (.r𝐻))
4847ad3antrrr 728 . . . . . . . 8 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → (.r𝑅) = (.r𝐻))
4948oveqd 7167 . . . . . . 7 ((((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))) = ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))
5049mpteq2dva 5153 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))
5150oveq2d 7166 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5245, 51eqtrd 2856 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥))))) = (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥))))))
5352mpteq2dva 5153 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
54 resspsr.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
55 eqid 2821 . . . 4 (Base‘𝑆) = (Base‘𝑆)
56 eqid 2821 . . . 4 (.r𝑆) = (.r𝑆)
57 fvex 6677 . . . . . . . 8 (Base‘𝑅) ∈ V
5810, 25syl 17 . . . . . . . . 9 (𝜑𝑇 = (Base‘𝐻))
59 eqid 2821 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
6059subrgss 19530 . . . . . . . . . 10 (𝑇 ∈ (SubRing‘𝑅) → 𝑇 ⊆ (Base‘𝑅))
6110, 60syl 17 . . . . . . . . 9 (𝜑𝑇 ⊆ (Base‘𝑅))
6258, 61eqsstrrd 4005 . . . . . . . 8 (𝜑 → (Base‘𝐻) ⊆ (Base‘𝑅))
63 mapss 8447 . . . . . . . 8 (((Base‘𝑅) ∈ V ∧ (Base‘𝐻) ⊆ (Base‘𝑅)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6457, 62, 63sylancr 589 . . . . . . 7 (𝜑 → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6564adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ⊆ ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
662, 17, 7, 3, 6psrbas 20152 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 = ((Base‘𝐻) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6754, 59, 7, 55, 6psrbas 20152 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (Base‘𝑆) = ((Base‘𝑅) ↑m {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}))
6865, 66, 673sstr4d 4013 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝐵 ⊆ (Base‘𝑆))
6968, 18sseldd 3967 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑋 ∈ (Base‘𝑆))
7068, 28sseldd 3967 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → 𝑌 ∈ (Base‘𝑆))
7154, 55, 41, 56, 7, 69, 70psrmulfval 20159 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘f𝑥)))))))
72 eqid 2821 . . . 4 (.r𝐻) = (.r𝐻)
73 eqid 2821 . . . 4 (.r𝑈) = (.r𝑈)
742, 3, 72, 73, 7, 18, 28psrmulfval 20159 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ (𝐻 Σg (𝑥 ∈ {𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∣ 𝑦r𝑘} ↦ ((𝑋𝑥)(.r𝐻)(𝑌‘(𝑘f𝑥)))))))
7553, 71, 743eqtr4rd 2867 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑆)𝑌))
763fvexi 6678 . . . 4 𝐵 ∈ V
77 resspsr.p . . . . 5 𝑃 = (𝑆s 𝐵)
7877, 56ressmulr 16619 . . . 4 (𝐵 ∈ V → (.r𝑆) = (.r𝑃))
7976, 78mp1i 13 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (.r𝑆) = (.r𝑃))
8079oveqd 7167 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑆)𝑌) = (𝑋(.r𝑃)𝑌))
8175, 80eqtrd 2856 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝑋(.r𝑈)𝑌) = (𝑋(.r𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  wss 3935   class class class wbr 5058  cmpt 5138  ccnv 5548  cima 5552  wf 6345  cfv 6349  (class class class)co 7150  f cof 7401  r cofr 7402  m cmap 8400  Fincfn 8503  cle 10670  cmin 10864  cn 11632  0cn0 11891  Basecbs 16477  s cress 16478  .rcmulr 16560   Σg cgsu 16708  SubMndcsubmnd 17949  SubGrpcsubg 18267  SubRingcsubrg 19525   mPwSer cmps 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-seq 13364  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-grp 18100  df-minusg 18101  df-subg 18270  df-mgp 19234  df-ring 19293  df-subrg 19527  df-psr 20130
This theorem is referenced by:  subrgpsr  20193  ressmplmul  20233
  Copyright terms: Public domain W3C validator