Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resstos Structured version   Visualization version   GIF version

Theorem resstos 29788
Description: The restriction of a Toset is a Toset. (Contributed by Thierry Arnoux, 20-Jan-2018.)
Assertion
Ref Expression
resstos ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)

Proof of Theorem resstos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tospos 29786 . . 3 (𝐹 ∈ Toset → 𝐹 ∈ Poset)
2 resspos 29787 . . 3 ((𝐹 ∈ Poset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
31, 2sylan 487 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Poset)
4 eqid 2651 . . . . . . 7 (𝐹s 𝐴) = (𝐹s 𝐴)
5 eqid 2651 . . . . . . 7 (Base‘𝐹) = (Base‘𝐹)
64, 5ressbas 15977 . . . . . 6 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐹)) = (Base‘(𝐹s 𝐴)))
7 inss2 3867 . . . . . 6 (𝐴 ∩ (Base‘𝐹)) ⊆ (Base‘𝐹)
86, 7syl6eqssr 3689 . . . . 5 (𝐴𝑉 → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
98adantl 481 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹))
10 eqid 2651 . . . . . . 7 (le‘𝐹) = (le‘𝐹)
115, 10istos 17082 . . . . . 6 (𝐹 ∈ Toset ↔ (𝐹 ∈ Poset ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1211simprbi 479 . . . . 5 (𝐹 ∈ Toset → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
1312adantr 480 . . . 4 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
14 ssralv 3699 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
15 ssralv 3699 . . . . . 6 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1615ralimdv 2992 . . . . 5 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
1714, 16syld 47 . . . 4 ((Base‘(𝐹s 𝐴)) ⊆ (Base‘𝐹) → (∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝐹)(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥)))
189, 13, 17sylc 65 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥))
194, 10ressle 16106 . . . . . . 7 (𝐴𝑉 → (le‘𝐹) = (le‘(𝐹s 𝐴)))
2019breqd 4696 . . . . . 6 (𝐴𝑉 → (𝑥(le‘𝐹)𝑦𝑥(le‘(𝐹s 𝐴))𝑦))
2119breqd 4696 . . . . . 6 (𝐴𝑉 → (𝑦(le‘𝐹)𝑥𝑦(le‘(𝐹s 𝐴))𝑥))
2220, 21orbi12d 746 . . . . 5 (𝐴𝑉 → ((𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ (𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
23222ralbidv 3018 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2423adantl 481 . . 3 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘𝐹)𝑦𝑦(le‘𝐹)𝑥) ↔ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
2518, 24mpbid 222 . 2 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥))
26 eqid 2651 . . 3 (Base‘(𝐹s 𝐴)) = (Base‘(𝐹s 𝐴))
27 eqid 2651 . . 3 (le‘(𝐹s 𝐴)) = (le‘(𝐹s 𝐴))
2826, 27istos 17082 . 2 ((𝐹s 𝐴) ∈ Toset ↔ ((𝐹s 𝐴) ∈ Poset ∧ ∀𝑥 ∈ (Base‘(𝐹s 𝐴))∀𝑦 ∈ (Base‘(𝐹s 𝐴))(𝑥(le‘(𝐹s 𝐴))𝑦𝑦(le‘(𝐹s 𝐴))𝑥)))
293, 25, 28sylanbrc 699 1 ((𝐹 ∈ Toset ∧ 𝐴𝑉) → (𝐹s 𝐴) ∈ Toset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  wcel 2030  wral 2941  cin 3606  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  lecple 15995  Posetcpo 16987  Tosetctos 17080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-dec 11532  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-ple 16008  df-poset 16993  df-toset 17081
This theorem is referenced by:  submomnd  29838  submarchi  29868
  Copyright terms: Public domain W3C validator