MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppfi Structured version   Visualization version   GIF version

Theorem ressuppfi 8853
Description: If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.)
Hypotheses
Ref Expression
ressuppfi.b (𝜑 → (dom 𝐹𝐵) ∈ Fin)
ressuppfi.f (𝜑𝐹𝑊)
ressuppfi.g (𝜑𝐺 = (𝐹𝐵))
ressuppfi.s (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
ressuppfi.z (𝜑𝑍𝑉)
Assertion
Ref Expression
ressuppfi (𝜑 → (𝐹 supp 𝑍) ∈ Fin)

Proof of Theorem ressuppfi
StepHypRef Expression
1 ressuppfi.g . . . . . 6 (𝜑𝐺 = (𝐹𝐵))
21eqcomd 2827 . . . . 5 (𝜑 → (𝐹𝐵) = 𝐺)
32oveq1d 7165 . . . 4 (𝜑 → ((𝐹𝐵) supp 𝑍) = (𝐺 supp 𝑍))
4 ressuppfi.s . . . 4 (𝜑 → (𝐺 supp 𝑍) ∈ Fin)
53, 4eqeltrd 2913 . . 3 (𝜑 → ((𝐹𝐵) supp 𝑍) ∈ Fin)
6 ressuppfi.b . . 3 (𝜑 → (dom 𝐹𝐵) ∈ Fin)
7 unfi 8779 . . 3 ((((𝐹𝐵) supp 𝑍) ∈ Fin ∧ (dom 𝐹𝐵) ∈ Fin) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
85, 6, 7syl2anc 586 . 2 (𝜑 → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) ∈ Fin)
9 ressuppfi.f . . 3 (𝜑𝐹𝑊)
10 ressuppfi.z . . 3 (𝜑𝑍𝑉)
11 ressuppssdif 7845 . . 3 ((𝐹𝑊𝑍𝑉) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
129, 10, 11syl2anc 586 . 2 (𝜑 → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
138, 12ssfid 8735 1 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cdif 3932  cun 3933  wss 3935  dom cdm 5549  cres 5551  (class class class)co 7150   supp csupp 7824  Fincfn 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507
This theorem is referenced by:  resfsupp  8854
  Copyright terms: Public domain W3C validator