MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressuppssdif Structured version   Visualization version   GIF version

Theorem ressuppssdif 7268
Description: The support of the restriction of a function is a subset of the support of the function itself. (Contributed by AV, 22-Apr-2019.)
Assertion
Ref Expression
ressuppssdif ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))

Proof of Theorem ressuppssdif
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldif 3569 . . . . . 6 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ↔ (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}))
2 sneq 4163 . . . . . . . . . 10 (𝑧 = 𝑥 → {𝑧} = {𝑥})
32imaeq2d 5430 . . . . . . . . 9 (𝑧 = 𝑥 → (𝐹 “ {𝑧}) = (𝐹 “ {𝑥}))
43neeq1d 2849 . . . . . . . 8 (𝑧 = 𝑥 → ((𝐹 “ {𝑧}) ≠ {𝑍} ↔ (𝐹 “ {𝑥}) ≠ {𝑍}))
54elrab 3350 . . . . . . 7 (𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}))
6 ianor 509 . . . . . . . 8 (¬ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
72imaeq2d 5430 . . . . . . . . . 10 (𝑧 = 𝑥 → ((𝐹𝐵) “ {𝑧}) = ((𝐹𝐵) “ {𝑥}))
87neeq1d 2849 . . . . . . . . 9 (𝑧 = 𝑥 → (((𝐹𝐵) “ {𝑧}) ≠ {𝑍} ↔ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
98elrab 3350 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (𝑥 ∈ dom (𝐹𝐵) ∧ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
106, 9xchnxbir 323 . . . . . . 7 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ↔ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
11 ianor 509 . . . . . . . . . . 11 (¬ (𝑥𝐵𝑥 ∈ dom 𝐹) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
12 dmres 5383 . . . . . . . . . . . 12 dom (𝐹𝐵) = (𝐵 ∩ dom 𝐹)
1312elin2 3784 . . . . . . . . . . 11 (𝑥 ∈ dom (𝐹𝐵) ↔ (𝑥𝐵𝑥 ∈ dom 𝐹))
1411, 13xchnxbir 323 . . . . . . . . . 10 𝑥 ∈ dom (𝐹𝐵) ↔ (¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹))
15 simpl 473 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ dom 𝐹)
1615anim2i 592 . . . . . . . . . . . . . 14 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (¬ 𝑥𝐵𝑥 ∈ dom 𝐹))
1716ancomd 467 . . . . . . . . . . . . 13 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
18 eldif 3569 . . . . . . . . . . . . 13 (𝑥 ∈ (dom 𝐹𝐵) ↔ (𝑥 ∈ dom 𝐹 ∧ ¬ 𝑥𝐵))
1917, 18sylibr 224 . . . . . . . . . . . 12 ((¬ 𝑥𝐵 ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
2019ex 450 . . . . . . . . . . 11 𝑥𝐵 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
21 pm2.24 121 . . . . . . . . . . . . 13 (𝑥 ∈ dom 𝐹 → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2221adantr 481 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ 𝑥 ∈ dom 𝐹𝑥 ∈ (dom 𝐹𝐵)))
2322com12 32 . . . . . . . . . . 11 𝑥 ∈ dom 𝐹 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2420, 23jaoi 394 . . . . . . . . . 10 ((¬ 𝑥𝐵 ∨ ¬ 𝑥 ∈ dom 𝐹) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2514, 24sylbi 207 . . . . . . . . 9 𝑥 ∈ dom (𝐹𝐵) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
2615adantl 482 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ dom 𝐹)
27 snssi 4313 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐵 → {𝑥} ⊆ 𝐵)
2827adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ dom 𝐹𝑥𝐵) → {𝑥} ⊆ 𝐵)
29 resima2 5396 . . . . . . . . . . . . . . . . . . . 20 ({𝑥} ⊆ 𝐵 → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3028, 29syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹𝐵) “ {𝑥}) = (𝐹 “ {𝑥}))
3130eqcomd 2627 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
3231adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = ((𝐹𝐵) “ {𝑥}))
33 simpr 477 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → ((𝐹𝐵) “ {𝑥}) = {𝑍})
3432, 33eqtrd 2655 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ dom 𝐹𝑥𝐵) ∧ ((𝐹𝐵) “ {𝑥}) = {𝑍}) → (𝐹 “ {𝑥}) = {𝑍})
3534ex 450 . . . . . . . . . . . . . . 15 ((𝑥 ∈ dom 𝐹𝑥𝐵) → (((𝐹𝐵) “ {𝑥}) = {𝑍} → (𝐹 “ {𝑥}) = {𝑍}))
3635necon3d 2811 . . . . . . . . . . . . . 14 ((𝑥 ∈ dom 𝐹𝑥𝐵) → ((𝐹 “ {𝑥}) ≠ {𝑍} → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3736impancom 456 . . . . . . . . . . . . 13 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (𝑥𝐵 → ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}))
3837con3d 148 . . . . . . . . . . . 12 ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ¬ 𝑥𝐵))
3938impcom 446 . . . . . . . . . . 11 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → ¬ 𝑥𝐵)
4026, 39eldifd 3570 . . . . . . . . . 10 ((¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} ∧ (𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
4140ex 450 . . . . . . . . 9 (¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍} → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4225, 41jaoi 394 . . . . . . . 8 ((¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍}) → ((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) → 𝑥 ∈ (dom 𝐹𝐵)))
4342impcom 446 . . . . . . 7 (((𝑥 ∈ dom 𝐹 ∧ (𝐹 “ {𝑥}) ≠ {𝑍}) ∧ (¬ 𝑥 ∈ dom (𝐹𝐵) ∨ ¬ ((𝐹𝐵) “ {𝑥}) ≠ {𝑍})) → 𝑥 ∈ (dom 𝐹𝐵))
445, 10, 43syl2anb 496 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∧ ¬ 𝑥 ∈ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
451, 44sylbi 207 . . . . 5 (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵))
4645a1i 11 . . . 4 ((𝐹𝑉𝑍𝑊) → (𝑥 ∈ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) → 𝑥 ∈ (dom 𝐹𝐵)))
4746ssrdv 3593 . . 3 ((𝐹𝑉𝑍𝑊) → ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
48 ssundif 4029 . . 3 ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)) ↔ ({𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ∖ {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}}) ⊆ (dom 𝐹𝐵))
4947, 48sylibr 224 . 2 ((𝐹𝑉𝑍𝑊) → {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}} ⊆ ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
50 suppval 7249 . 2 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) = {𝑧 ∈ dom 𝐹 ∣ (𝐹 “ {𝑧}) ≠ {𝑍}})
51 resexg 5406 . . . 4 (𝐹𝑉 → (𝐹𝐵) ∈ V)
52 suppval 7249 . . . 4 (((𝐹𝐵) ∈ V ∧ 𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5351, 52sylan 488 . . 3 ((𝐹𝑉𝑍𝑊) → ((𝐹𝐵) supp 𝑍) = {𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}})
5453uneq1d 3749 . 2 ((𝐹𝑉𝑍𝑊) → (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)) = ({𝑧 ∈ dom (𝐹𝐵) ∣ ((𝐹𝐵) “ {𝑧}) ≠ {𝑍}} ∪ (dom 𝐹𝐵)))
5549, 50, 543sstr4d 3632 1 ((𝐹𝑉𝑍𝑊) → (𝐹 supp 𝑍) ⊆ (((𝐹𝐵) supp 𝑍) ∪ (dom 𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  {crab 2911  Vcvv 3189  cdif 3556  cun 3557  wss 3559  {csn 4153  dom cdm 5079  cres 5081  cima 5082  (class class class)co 6610   supp csupp 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-supp 7248
This theorem is referenced by:  ressuppfi  8252
  Copyright terms: Public domain W3C validator