MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressust Structured version   Visualization version   GIF version

Theorem ressust 22008
Description: The uniform structure of a restricted space. (Contributed by Thierry Arnoux, 22-Jan-2018.)
Hypotheses
Ref Expression
ressust.x 𝑋 = (Base‘𝑊)
ressust.t 𝑇 = (UnifSt‘(𝑊s 𝐴))
Assertion
Ref Expression
ressust ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))

Proof of Theorem ressust
StepHypRef Expression
1 ressust.t . . 3 𝑇 = (UnifSt‘(𝑊s 𝐴))
2 ressust.x . . . . . . 7 𝑋 = (Base‘𝑊)
3 fvex 6168 . . . . . . 7 (Base‘𝑊) ∈ V
42, 3eqeltri 2694 . . . . . 6 𝑋 ∈ V
54ssex 4772 . . . . 5 (𝐴𝑋𝐴 ∈ V)
65adantl 482 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝐴 ∈ V)
7 ressuss 22007 . . . 4 (𝐴 ∈ V → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
86, 7syl 17 . . 3 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
91, 8syl5eq 2667 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
10 eqid 2621 . . . . 5 (UnifSt‘𝑊) = (UnifSt‘𝑊)
11 eqid 2621 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
122, 10, 11isusp 22005 . . . 4 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ (TopOpen‘𝑊) = (unifTop‘(UnifSt‘𝑊))))
1312simplbi 476 . . 3 (𝑊 ∈ UnifSp → (UnifSt‘𝑊) ∈ (UnifOn‘𝑋))
14 trust 21973 . . 3 (((UnifSt‘𝑊) ∈ (UnifOn‘𝑋) ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
1513, 14sylan 488 . 2 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
169, 15eqeltrd 2698 1 ((𝑊 ∈ UnifSp ∧ 𝐴𝑋) → 𝑇 ∈ (UnifOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  wss 3560   × cxp 5082  cfv 5857  (class class class)co 6615  Basecbs 15800  s cress 15801  t crest 16021  TopOpenctopn 16022  UnifOncust 21943  unifTopcutop 21974  UnifStcuss 21997  UnifSpcusp 21998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-unif 15905  df-rest 16023  df-ust 21944  df-uss 22000  df-usp 22001
This theorem is referenced by:  ucnextcn  22048
  Copyright terms: Public domain W3C validator