MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restco Structured version   Visualization version   GIF version

Theorem restco 20878
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restco ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))

Proof of Theorem restco
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . 5 𝑦 ∈ V
21inex1 4759 . . . 4 (𝑦𝐴) ∈ V
3 ineq1 3785 . . . . 5 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = ((𝑦𝐴) ∩ 𝐵))
4 inass 3801 . . . . 5 ((𝑦𝐴) ∩ 𝐵) = (𝑦 ∩ (𝐴𝐵))
53, 4syl6eq 2671 . . . 4 (𝑥 = (𝑦𝐴) → (𝑥𝐵) = (𝑦 ∩ (𝐴𝐵)))
62, 5abrexco 6456 . . 3 {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)} = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
7 eqid 2621 . . . . . 6 (𝑦𝐽 ↦ (𝑦𝐴)) = (𝑦𝐽 ↦ (𝑦𝐴))
87rnmpt 5331 . . . . 5 ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}
9 mpteq1 4697 . . . . 5 (ran (𝑦𝐽 ↦ (𝑦𝐴)) = {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} → (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵)))
108, 9ax-mp 5 . . . 4 (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = (𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)} ↦ (𝑥𝐵))
1110rnmpt 5331 . . 3 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = {𝑧 ∣ ∃𝑥 ∈ {𝑤 ∣ ∃𝑦𝐽 𝑤 = (𝑦𝐴)}𝑧 = (𝑥𝐵)}
12 eqid 2621 . . . 4 (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
1312rnmpt 5331 . . 3 ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))) = {𝑧 ∣ ∃𝑦𝐽 𝑧 = (𝑦 ∩ (𝐴𝐵))}
146, 11, 133eqtr4i 2653 . 2 ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵)))
15 restval 16008 . . . . 5 ((𝐽𝑉𝐴𝑊) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
16153adant3 1079 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t 𝐴) = ran (𝑦𝐽 ↦ (𝑦𝐴)))
1716oveq1d 6619 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵))
18 ovex 6632 . . . . 5 (𝐽t 𝐴) ∈ V
1916, 18syl6eqelr 2707 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V)
20 simp3 1061 . . . 4 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐵𝑋)
21 restval 16008 . . . 4 ((ran (𝑦𝐽 ↦ (𝑦𝐴)) ∈ V ∧ 𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2219, 20, 21syl2anc 692 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (ran (𝑦𝐽 ↦ (𝑦𝐴)) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
2317, 22eqtrd 2655 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = ran (𝑥 ∈ ran (𝑦𝐽 ↦ (𝑦𝐴)) ↦ (𝑥𝐵)))
24 simp1 1059 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → 𝐽𝑉)
25 inex1g 4761 . . . 4 (𝐴𝑊 → (𝐴𝐵) ∈ V)
26253ad2ant2 1081 . . 3 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐴𝐵) ∈ V)
27 restval 16008 . . 3 ((𝐽𝑉 ∧ (𝐴𝐵) ∈ V) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
2824, 26, 27syl2anc 692 . 2 ((𝐽𝑉𝐴𝑊𝐵𝑋) → (𝐽t (𝐴𝐵)) = ran (𝑦𝐽 ↦ (𝑦 ∩ (𝐴𝐵))))
2914, 23, 283eqtr4a 2681 1 ((𝐽𝑉𝐴𝑊𝐵𝑋) → ((𝐽t 𝐴) ↾t 𝐵) = (𝐽t (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wrex 2908  Vcvv 3186  cin 3554  cmpt 4673  ran crn 5075  (class class class)co 6604  t crest 16002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-rest 16004
This theorem is referenced by:  restabs  20879  restin  20880  resstopn  20900  ressuss  21977  smfres  40304
  Copyright terms: Public domain W3C validator