Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Structured version   Visualization version   GIF version

Theorem resthauslem 21148
 Description: Lemma for resthaus 21153 and similar theorems. If the topological property 𝐴 is preserved under injective preimages, then property 𝐴 passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1 (𝐽𝐴𝐽 ∈ Top)
resthauslem.2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
Assertion
Ref Expression
resthauslem ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 473 . 2 ((𝐽𝐴𝑆𝑉) → 𝐽𝐴)
2 f1oi 6161 . . 3 ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽)
3 f1of1 6123 . . 3 (( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1-onto→(𝑆 𝐽) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
42, 3mp1i 13 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽))
5 inss2 3826 . . . . 5 (𝑆 𝐽) ⊆ 𝐽
6 resabs1 5415 . . . . 5 ((𝑆 𝐽) ⊆ 𝐽 → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽)))
75, 6ax-mp 5 . . . 4 (( I ↾ 𝐽) ↾ (𝑆 𝐽)) = ( I ↾ (𝑆 𝐽))
8 resthauslem.1 . . . . . . . 8 (𝐽𝐴𝐽 ∈ Top)
98adantr 481 . . . . . . 7 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ Top)
10 eqid 2620 . . . . . . . 8 𝐽 = 𝐽
1110toptopon 20703 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
129, 11sylib 208 . . . . . 6 ((𝐽𝐴𝑆𝑉) → 𝐽 ∈ (TopOn‘ 𝐽))
13 idcn 21042 . . . . . 6 (𝐽 ∈ (TopOn‘ 𝐽) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1412, 13syl 17 . . . . 5 ((𝐽𝐴𝑆𝑉) → ( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽))
1510cnrest 21070 . . . . 5 ((( I ↾ 𝐽) ∈ (𝐽 Cn 𝐽) ∧ (𝑆 𝐽) ⊆ 𝐽) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1614, 5, 15sylancl 693 . . . 4 ((𝐽𝐴𝑆𝑉) → (( I ↾ 𝐽) ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
177, 16syl5eqelr 2704 . . 3 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t (𝑆 𝐽)) Cn 𝐽))
1810restin 20951 . . . 4 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) = (𝐽t (𝑆 𝐽)))
1918oveq1d 6650 . . 3 ((𝐽𝐴𝑆𝑉) → ((𝐽t 𝑆) Cn 𝐽) = ((𝐽t (𝑆 𝐽)) Cn 𝐽))
2017, 19eleqtrrd 2702 . 2 ((𝐽𝐴𝑆𝑉) → ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽))
21 resthauslem.2 . 2 ((𝐽𝐴 ∧ ( I ↾ (𝑆 𝐽)):(𝑆 𝐽)–1-1→(𝑆 𝐽) ∧ ( I ↾ (𝑆 𝐽)) ∈ ((𝐽t 𝑆) Cn 𝐽)) → (𝐽t 𝑆) ∈ 𝐴)
221, 4, 20, 21syl3anc 1324 1 ((𝐽𝐴𝑆𝑉) → (𝐽t 𝑆) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   ∩ cin 3566   ⊆ wss 3567  ∪ cuni 4427   I cid 5013   ↾ cres 5106  –1-1→wf1 5873  –1-1-onto→wf1o 5875  ‘cfv 5876  (class class class)co 6635   ↾t crest 16062  Topctop 20679  TopOnctopon 20696   Cn ccn 21009 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-map 7844  df-en 7941  df-fin 7944  df-fi 8302  df-rest 16064  df-topgen 16085  df-top 20680  df-topon 20697  df-bases 20731  df-cn 21012 This theorem is referenced by:  restt0  21151  restt1  21152  resthaus  21153
 Copyright terms: Public domain W3C validator