MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Structured version   Visualization version   GIF version

Theorem restlly 22093
Description: If the property 𝐴 passes to open subspaces, then a space which is 𝐴 is also locally 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
restlly.2 (𝜑𝐴 ⊆ Top)
Assertion
Ref Expression
restlly (𝜑𝐴 ⊆ Locally 𝐴)
Distinct variable groups:   𝑥,𝑗,𝐴   𝜑,𝑗,𝑥

Proof of Theorem restlly
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5 (𝜑𝐴 ⊆ Top)
21sselda 3969 . . . 4 ((𝜑𝑗𝐴) → 𝑗 ∈ Top)
3 simprl 769 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥𝑗)
4 vex 3499 . . . . . . . . 9 𝑥 ∈ V
54pwid 4565 . . . . . . . 8 𝑥 ∈ 𝒫 𝑥
65a1i 11 . . . . . . 7 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ 𝒫 𝑥)
73, 6elind 4173 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑥 ∈ (𝑗 ∩ 𝒫 𝑥))
8 simprr 771 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → 𝑦𝑥)
9 restlly.1 . . . . . . . 8 ((𝜑 ∧ (𝑗𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ 𝐴)
109anassrs 470 . . . . . . 7 (((𝜑𝑗𝐴) ∧ 𝑥𝑗) → (𝑗t 𝑥) ∈ 𝐴)
1110adantrr 715 . . . . . 6 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → (𝑗t 𝑥) ∈ 𝐴)
12 elequ2 2129 . . . . . . . 8 (𝑢 = 𝑥 → (𝑦𝑢𝑦𝑥))
13 oveq2 7166 . . . . . . . . 9 (𝑢 = 𝑥 → (𝑗t 𝑢) = (𝑗t 𝑥))
1413eleq1d 2899 . . . . . . . 8 (𝑢 = 𝑥 → ((𝑗t 𝑢) ∈ 𝐴 ↔ (𝑗t 𝑥) ∈ 𝐴))
1512, 14anbi12d 632 . . . . . . 7 (𝑢 = 𝑥 → ((𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴) ↔ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)))
1615rspcev 3625 . . . . . 6 ((𝑥 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑥 ∧ (𝑗t 𝑥) ∈ 𝐴)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
177, 8, 11, 16syl12anc 834 . . . . 5 (((𝜑𝑗𝐴) ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
1817ralrimivva 3193 . . . 4 ((𝜑𝑗𝐴) → ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴))
19 islly 22078 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)))
202, 18, 19sylanbrc 585 . . 3 ((𝜑𝑗𝐴) → 𝑗 ∈ Locally 𝐴)
2120ex 415 . 2 (𝜑 → (𝑗𝐴𝑗 ∈ Locally 𝐴))
2221ssrdv 3975 1 (𝜑𝐴 ⊆ Locally 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938  𝒫 cpw 4541  (class class class)co 7158  t crest 16696  Topctop 21503  Locally clly 22074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-iota 6316  df-fv 6365  df-ov 7161  df-lly 22076
This theorem is referenced by:  llyidm  22098  nllyidm  22099  toplly  22100  hauslly  22102  lly1stc  22106
  Copyright terms: Public domain W3C validator