![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resttopon2 | Structured version Visualization version GIF version |
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
resttopon2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 20766 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | resttop 21012 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) | |
3 | 1, 2 | sylan 487 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ Top) |
4 | toponuni 20767 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
5 | 4 | ineq2d 3847 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∩ 𝑋) = (𝐴 ∩ ∪ 𝐽)) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = (𝐴 ∩ ∪ 𝐽)) |
7 | eqid 2651 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7 | restuni2 21019 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪ (𝐽 ↾t 𝐴)) |
9 | 1, 8 | sylan 487 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ ∪ 𝐽) = ∪ (𝐽 ↾t 𝐴)) |
10 | 6, 9 | eqtrd 2685 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴)) |
11 | istopon 20765 | . 2 ⊢ ((𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋)) ↔ ((𝐽 ↾t 𝐴) ∈ Top ∧ (𝐴 ∩ 𝑋) = ∪ (𝐽 ↾t 𝐴))) | |
12 | 3, 10, 11 | sylanbrc 699 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴 ∈ 𝑉) → (𝐽 ↾t 𝐴) ∈ (TopOn‘(𝐴 ∩ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ∪ cuni 4468 ‘cfv 5926 (class class class)co 6690 ↾t crest 16128 Topctop 20746 TopOnctopon 20763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-oadd 7609 df-er 7787 df-en 7998 df-fin 8001 df-fi 8358 df-rest 16130 df-topgen 16151 df-top 20747 df-topon 20764 df-bases 20798 |
This theorem is referenced by: resstps 21039 lmss 21150 |
Copyright terms: Public domain | W3C validator |