MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resubdrg Structured version   Visualization version   GIF version

Theorem resubdrg 19948
Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014.) (Revised by Thierry Arnoux, 30-Jun-2019.)
Assertion
Ref Expression
resubdrg (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)

Proof of Theorem resubdrg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recn 10023 . . 3 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
2 readdcl 10016 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3 renegcl 10341 . . 3 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
4 1re 10036 . . 3 1 ∈ ℝ
5 remulcl 10018 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
6 rereccl 10740 . . 3 ((𝑥 ∈ ℝ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℝ)
71, 2, 3, 4, 5, 6cnsubdrglem 19791 . 2 (ℝ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℝ) ∈ DivRing)
8 df-refld 19945 . . . 4 fld = (ℂflds ℝ)
98eleq1i 2691 . . 3 (ℝfld ∈ DivRing ↔ (ℂflds ℝ) ∈ DivRing)
109anbi2i 730 . 2 ((ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing) ↔ (ℝ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℝ) ∈ DivRing))
117, 10mpbir 221 1 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wcel 1989  cfv 5886  (class class class)co 6647  cr 9932  s cress 15852  DivRingcdr 18741  SubRingcsubrg 18770  fldccnfld 19740  fldcrefld 19944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-0g 16096  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-subg 17585  df-cmn 18189  df-mgp 18484  df-ur 18496  df-ring 18543  df-cring 18544  df-oppr 18617  df-dvdsr 18635  df-unit 18636  df-invr 18666  df-dvr 18677  df-drng 18743  df-subrg 18772  df-cnfld 19741  df-refld 19945
This theorem is referenced by:  resubgval  19949  re1r  19953  redvr  19957  refld  19959  recvs  22940  taylthlem2  24122  reefgim  24198  circgrp  24292  circsubm  24293  rzgrp  24294  jensenlem2  24708  amgmlem  24710  nn0archi  29828  rezh  30000  rerrext  30038  cnrrext  30039  zrhre  30048  qqhre  30049  amgmwlem  42319
  Copyright terms: Public domain W3C validator