Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  resunimafz0 Structured version   Visualization version   GIF version

Theorem resunimafz0 13164
 Description: TODO-AV: Revise using 𝐹 ∈ Word dom 𝐼? Formerly part of proof of eupth2lem3 26956: The union of a restriction by an image over an open range of nonnegative integers and a singleton of an ordered pair is a restriction by an image over an interval of nonnegative integers. (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
resunimafz0.i (𝜑 → Fun 𝐼)
resunimafz0.f (𝜑𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
resunimafz0.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
Assertion
Ref Expression
resunimafz0 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))

Proof of Theorem resunimafz0
StepHypRef Expression
1 imaundi 5508 . . . . 5 (𝐹 “ ((0..^𝑁) ∪ {𝑁})) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁}))
2 resunimafz0.n . . . . . . . . 9 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
3 elfzonn0 12450 . . . . . . . . 9 (𝑁 ∈ (0..^(#‘𝐹)) → 𝑁 ∈ ℕ0)
42, 3syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
5 elnn0uz 11669 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (ℤ‘0))
64, 5sylib 208 . . . . . . 7 (𝜑𝑁 ∈ (ℤ‘0))
7 fzisfzounsn 12517 . . . . . . 7 (𝑁 ∈ (ℤ‘0) → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
86, 7syl 17 . . . . . 6 (𝜑 → (0...𝑁) = ((0..^𝑁) ∪ {𝑁}))
98imaeq2d 5429 . . . . 5 (𝜑 → (𝐹 “ (0...𝑁)) = (𝐹 “ ((0..^𝑁) ∪ {𝑁})))
10 resunimafz0.f . . . . . . . 8 (𝜑𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
1110ffnd 6005 . . . . . . 7 (𝜑𝐹 Fn (0..^(#‘𝐹)))
12 fnsnfv 6216 . . . . . . 7 ((𝐹 Fn (0..^(#‘𝐹)) ∧ 𝑁 ∈ (0..^(#‘𝐹))) → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1311, 2, 12syl2anc 692 . . . . . 6 (𝜑 → {(𝐹𝑁)} = (𝐹 “ {𝑁}))
1413uneq2d 3750 . . . . 5 (𝜑 → ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}) = ((𝐹 “ (0..^𝑁)) ∪ (𝐹 “ {𝑁})))
151, 9, 143eqtr4a 2686 . . . 4 (𝜑 → (𝐹 “ (0...𝑁)) = ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)}))
1615reseq2d 5360 . . 3 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})))
17 resundi 5373 . . 3 (𝐼 ↾ ((𝐹 “ (0..^𝑁)) ∪ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)}))
1816, 17syl6eq 2676 . 2 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})))
19 resunimafz0.i . . . . 5 (𝜑 → Fun 𝐼)
20 funfn 5879 . . . . 5 (Fun 𝐼𝐼 Fn dom 𝐼)
2119, 20sylib 208 . . . 4 (𝜑𝐼 Fn dom 𝐼)
2210, 2ffvelrnd 6317 . . . 4 (𝜑 → (𝐹𝑁) ∈ dom 𝐼)
23 fnressn 6380 . . . 4 ((𝐼 Fn dom 𝐼 ∧ (𝐹𝑁) ∈ dom 𝐼) → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2421, 22, 23syl2anc 692 . . 3 (𝜑 → (𝐼 ↾ {(𝐹𝑁)}) = {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩})
2524uneq2d 3750 . 2 (𝜑 → ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ (𝐼 ↾ {(𝐹𝑁)})) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
2618, 25eqtrd 2660 1 (𝜑 → (𝐼 ↾ (𝐹 “ (0...𝑁))) = ((𝐼 ↾ (𝐹 “ (0..^𝑁))) ∪ {⟨(𝐹𝑁), (𝐼‘(𝐹𝑁))⟩}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1992   ∪ cun 3558  {csn 4153  ⟨cop 4159  dom cdm 5079   ↾ cres 5081   “ cima 5082  Fun wfun 5844   Fn wfn 5845  ⟶wf 5846  ‘cfv 5850  (class class class)co 6605  0cc0 9881  ℕ0cn0 11237  ℤ≥cuz 11631  ...cfz 12265  ..^cfzo 12403  #chash 13054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404 This theorem is referenced by:  trlsegvdeg  26947
 Copyright terms: Public domain W3C validator