![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > retopconn | Structured version Visualization version GIF version |
Description: Corollary of reconn 22852. The set of real numbers is connected. (Contributed by Jeff Hankins, 17-Aug-2009.) |
Ref | Expression |
---|---|
retopconn | ⊢ (topGen‘ran (,)) ∈ Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retop 22786 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
2 | uniretop 22787 | . . . 4 ⊢ ℝ = ∪ (topGen‘ran (,)) | |
3 | 2 | restid 16316 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → ((topGen‘ran (,)) ↾t ℝ) = (topGen‘ran (,))) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ ((topGen‘ran (,)) ↾t ℝ) = (topGen‘ran (,)) |
5 | iccssre 12468 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥[,]𝑦) ⊆ ℝ) | |
6 | 5 | rgen2a 3115 | . . 3 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥[,]𝑦) ⊆ ℝ |
7 | ssid 3765 | . . . 4 ⊢ ℝ ⊆ ℝ | |
8 | reconn 22852 | . . . 4 ⊢ (ℝ ⊆ ℝ → (((topGen‘ran (,)) ↾t ℝ) ∈ Conn ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥[,]𝑦) ⊆ ℝ)) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((topGen‘ran (,)) ↾t ℝ) ∈ Conn ↔ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥[,]𝑦) ⊆ ℝ) |
10 | 6, 9 | mpbir 221 | . 2 ⊢ ((topGen‘ran (,)) ↾t ℝ) ∈ Conn |
11 | 4, 10 | eqeltrri 2836 | 1 ⊢ (topGen‘ran (,)) ∈ Conn |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 (,)cioo 12388 [,]cicc 12391 ↾t crest 16303 topGenctg 16320 Topctop 20920 Conncconn 21436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fi 8484 df-sup 8515 df-inf 8516 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ico 12394 df-icc 12395 df-seq 13016 df-exp 13075 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-rest 16305 df-topgen 16326 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-top 20921 df-topon 20938 df-bases 20972 df-cld 21045 df-conn 21437 |
This theorem is referenced by: mblfinlem1 33777 |
Copyright terms: Public domain | W3C validator |