Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu8 Structured version   Visualization version   GIF version

Theorem reu8 3543
 Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006.)
Hypothesis
Ref Expression
rmo4.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
reu8 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem reu8
StepHypRef Expression
1 rmo4.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21cbvreuv 3312 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
3 reu6 3536 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥))
4 dfbi2 663 . . . . 5 ((𝜓𝑦 = 𝑥) ↔ ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
54ralbii 3118 . . . 4 (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)))
6 ancom 465 . . . . . 6 ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑))
7 equcom 2100 . . . . . . . . . 10 (𝑥 = 𝑦𝑦 = 𝑥)
87imbi2i 325 . . . . . . . . 9 ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑦 = 𝑥))
98ralbii 3118 . . . . . . . 8 (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥))
109a1i 11 . . . . . . 7 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑦 = 𝑥)))
11 biimt 349 . . . . . . . 8 (𝑥𝐴 → (𝜑 ↔ (𝑥𝐴𝜑)))
12 df-ral 3055 . . . . . . . . 9 (∀𝑦𝐴 (𝑦 = 𝑥𝜓) ↔ ∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)))
13 bi2.04 375 . . . . . . . . . 10 ((𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ (𝑦 = 𝑥 → (𝑦𝐴𝜓)))
1413albii 1896 . . . . . . . . 9 (∀𝑦(𝑦𝐴 → (𝑦 = 𝑥𝜓)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)))
15 eleq1w 2822 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1615, 1imbi12d 333 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ (𝑦𝐴𝜓)))
1716bicomd 213 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
1817equcoms 2102 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐴𝜓) ↔ (𝑥𝐴𝜑)))
1918equsalvw 2086 . . . . . . . . 9 (∀𝑦(𝑦 = 𝑥 → (𝑦𝐴𝜓)) ↔ (𝑥𝐴𝜑))
2012, 14, 193bitrri 287 . . . . . . . 8 ((𝑥𝐴𝜑) ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))
2111, 20syl6bb 276 . . . . . . 7 (𝑥𝐴 → (𝜑 ↔ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2210, 21anbi12d 749 . . . . . 6 (𝑥𝐴 → ((∀𝑦𝐴 (𝜓𝑥 = 𝑦) ∧ 𝜑) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
236, 22syl5bb 272 . . . . 5 (𝑥𝐴 → ((𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓))))
24 r19.26 3202 . . . . 5 (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ∧ ∀𝑦𝐴 (𝑦 = 𝑥𝜓)))
2523, 24syl6rbbr 279 . . . 4 (𝑥𝐴 → (∀𝑦𝐴 ((𝜓𝑦 = 𝑥) ∧ (𝑦 = 𝑥𝜓)) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
265, 25syl5bb 272 . . 3 (𝑥𝐴 → (∀𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
2726rexbiia 3178 . 2 (∃𝑥𝐴𝑦𝐴 (𝜓𝑦 = 𝑥) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
282, 3, 273bitri 286 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  ∃!wreu 3052 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-cleq 2753  df-clel 2756  df-ral 3055  df-rex 3056  df-reu 3057 This theorem is referenced by:  reu8nf  3657  reumodprminv  15711  grpinveu  17657  grpoideu  27672  grpoinveu  27682  cvmlift3lem2  31609  reuccatpfxs1  41944
 Copyright terms: Public domain W3C validator