Step | Hyp | Ref
| Expression |
1 | | eleq1w 2810 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉 ↔ 𝑦 ∈ Word 𝑉)) |
2 | | fveq2 6340 |
. . . . 5
⊢ (𝑥 = 𝑦 → (♯‘𝑥) = (♯‘𝑦)) |
3 | 2 | eqeq1d 2750 |
. . . 4
⊢ (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1))) |
4 | 1, 3 | anbi12d 749 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))) |
5 | 4 | cbvralv 3298 |
. 2
⊢
(∀𝑥 ∈
𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) |
6 | | reuccats1.1 |
. . . . 5
⊢
Ⅎ𝑣𝑋 |
7 | 6 | nfel2 2907 |
. . . 4
⊢
Ⅎ𝑣(𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 |
8 | 6 | nfel2 2907 |
. . . 4
⊢
Ⅎ𝑣(𝑊 ++ 〈“𝑥”〉) ∈ 𝑋 |
9 | | s1eq 13541 |
. . . . . 6
⊢ (𝑣 = 𝑥 → 〈“𝑣”〉 = 〈“𝑥”〉) |
10 | 9 | oveq2d 6817 |
. . . . 5
⊢ (𝑣 = 𝑥 → (𝑊 ++ 〈“𝑣”〉) = (𝑊 ++ 〈“𝑥”〉)) |
11 | 10 | eleq1d 2812 |
. . . 4
⊢ (𝑣 = 𝑥 → ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ↔ (𝑊 ++ 〈“𝑥”〉) ∈ 𝑋)) |
12 | | s1eq 13541 |
. . . . . 6
⊢ (𝑥 = 𝑢 → 〈“𝑥”〉 = 〈“𝑢”〉) |
13 | 12 | oveq2d 6817 |
. . . . 5
⊢ (𝑥 = 𝑢 → (𝑊 ++ 〈“𝑥”〉) = (𝑊 ++ 〈“𝑢”〉)) |
14 | 13 | eleq1d 2812 |
. . . 4
⊢ (𝑥 = 𝑢 → ((𝑊 ++ 〈“𝑥”〉) ∈ 𝑋 ↔ (𝑊 ++ 〈“𝑢”〉) ∈ 𝑋)) |
15 | 7, 8, 11, 14 | reu8nf 3645 |
. . 3
⊢
(∃!𝑣 ∈
𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ↔ ∃𝑣 ∈ 𝑉 ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) |
16 | | nfv 1980 |
. . . . 5
⊢
Ⅎ𝑣 𝑊 ∈ Word 𝑉 |
17 | | nfv 1980 |
. . . . . 6
⊢
Ⅎ𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)) |
18 | 6, 17 | nfral 3071 |
. . . . 5
⊢
Ⅎ𝑣∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)) |
19 | 16, 18 | nfan 1965 |
. . . 4
⊢
Ⅎ𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) |
20 | | nfv 1980 |
. . . . 5
⊢
Ⅎ𝑣 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) |
21 | 6, 20 | nfreu 3240 |
. . . 4
⊢
Ⅎ𝑣∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) |
22 | | simprl 811 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) → (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋) |
23 | | simp-4l 825 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → 𝑊 ∈ Word 𝑉) |
24 | | simpr 479 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
25 | 22 | adantr 472 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋) |
26 | | simplrr 820 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢)) |
27 | | simp-4r 827 |
. . . . . . . . 9
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) |
28 | | reuccats1lem 13650 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑥 ∈ 𝑋 ∧ (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋) ∧ (∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢) ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))) → (𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) → 𝑥 = (𝑊 ++ 〈“𝑣”〉))) |
29 | 23, 24, 25, 26, 27, 28 | syl32anc 1471 |
. . . . . . . 8
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) → 𝑥 = (𝑊 ++ 〈“𝑣”〉))) |
30 | | oveq1 6808 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑊 ++ 〈“𝑣”〉) → (𝑥 substr 〈0, (♯‘𝑊)〉) = ((𝑊 ++ 〈“𝑣”〉) substr 〈0,
(♯‘𝑊)〉)) |
31 | | simpl 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉) |
32 | | s1cl 13543 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ 𝑉 → 〈“𝑣”〉 ∈ Word 𝑉) |
33 | 31, 32 | anim12i 591 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) → (𝑊 ∈ Word 𝑉 ∧ 〈“𝑣”〉 ∈ Word 𝑉)) |
34 | 33 | adantr 472 |
. . . . . . . . . . . . 13
⊢ ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) → (𝑊 ∈ Word 𝑉 ∧ 〈“𝑣”〉 ∈ Word 𝑉)) |
35 | 34 | adantr 472 |
. . . . . . . . . . . 12
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑊 ∈ Word 𝑉 ∧ 〈“𝑣”〉 ∈ Word 𝑉)) |
36 | | swrdccat1 13628 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word 𝑉 ∧ 〈“𝑣”〉 ∈ Word 𝑉) → ((𝑊 ++ 〈“𝑣”〉) substr 〈0,
(♯‘𝑊)〉) =
𝑊) |
37 | 35, 36 | syl 17 |
. . . . . . . . . . 11
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ((𝑊 ++ 〈“𝑣”〉) substr 〈0,
(♯‘𝑊)〉) =
𝑊) |
38 | 30, 37 | sylan9eqr 2804 |
. . . . . . . . . 10
⊢
((((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑥 = (𝑊 ++ 〈“𝑣”〉)) → (𝑥 substr 〈0, (♯‘𝑊)〉) = 𝑊) |
39 | 38 | eqcomd 2754 |
. . . . . . . . 9
⊢
((((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑥 = (𝑊 ++ 〈“𝑣”〉)) → 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉)) |
40 | 39 | ex 449 |
. . . . . . . 8
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑥 = (𝑊 ++ 〈“𝑣”〉) → 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉))) |
41 | 29, 40 | impbid 202 |
. . . . . . 7
⊢
(((((𝑊 ∈ Word
𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) ↔ 𝑥 = (𝑊 ++ 〈“𝑣”〉))) |
42 | 41 | ralrimiva 3092 |
. . . . . 6
⊢ ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) → ∀𝑥 ∈ 𝑋 (𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) ↔ 𝑥 = (𝑊 ++ 〈“𝑣”〉))) |
43 | | reu6i 3526 |
. . . . . 6
⊢ (((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉) ↔ 𝑥 = (𝑊 ++ 〈“𝑣”〉))) → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉)) |
44 | 22, 42, 43 | syl2anc 696 |
. . . . 5
⊢ ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣 ∈ 𝑉) ∧ ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢))) → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉)) |
45 | 44 | exp31 631 |
. . . 4
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣 ∈ 𝑉 → (((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢)) → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉)))) |
46 | 19, 21, 45 | rexlimd 3152 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣 ∈ 𝑉 ((𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 ∧ ∀𝑢 ∈ 𝑉 ((𝑊 ++ 〈“𝑢”〉) ∈ 𝑋 → 𝑣 = 𝑢)) → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉))) |
47 | 15, 46 | syl5bi 232 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦 ∈ 𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉))) |
48 | 5, 47 | sylan2b 493 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥 ∈ 𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣 ∈ 𝑉 (𝑊 ++ 〈“𝑣”〉) ∈ 𝑋 → ∃!𝑥 ∈ 𝑋 𝑊 = (𝑥 substr 〈0, (♯‘𝑊)〉))) |