Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick3 Structured version   Visualization version   GIF version

Theorem reupick3 3945
 Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem reupick3
StepHypRef Expression
1 df-reu 2948 . . . 4 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 df-rex 2947 . . . . 5 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
3 anass 682 . . . . . 6 (((𝑥𝐴𝜑) ∧ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑𝜓)))
43exbii 1814 . . . . 5 (∃𝑥((𝑥𝐴𝜑) ∧ 𝜓) ↔ ∃𝑥(𝑥𝐴 ∧ (𝜑𝜓)))
52, 4bitr4i 267 . . . 4 (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓))
6 eupick 2565 . . . 4 ((∃!𝑥(𝑥𝐴𝜑) ∧ ∃𝑥((𝑥𝐴𝜑) ∧ 𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
71, 5, 6syl2anb 495 . . 3 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → ((𝑥𝐴𝜑) → 𝜓))
87expd 451 . 2 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓)) → (𝑥𝐴 → (𝜑𝜓)))
983impia 1280 1 ((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054  ∃wex 1744   ∈ wcel 2030  ∃!weu 2498  ∃wrex 2942  ∃!wreu 2943 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-ex 1745  df-nf 1750  df-eu 2502  df-mo 2503  df-rex 2947  df-reu 2948 This theorem is referenced by:  reupick2  3946
 Copyright terms: Public domain W3C validator