Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Visualization version   GIF version

Theorem reuss 4047
 Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reuss
StepHypRef Expression
1 id 22 . . . 4 (𝜑𝜑)
21rgenw 3058 . . 3 𝑥𝐴 (𝜑𝜑)
3 reuss2 4046 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜑)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
42, 3mpanl2 719 . 2 ((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) → ∃!𝑥𝐴 𝜑)
543impb 1108 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072  ∀wral 3046  ∃wrex 3047  ∃!wreu 3048   ⊆ wss 3711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-ral 3051  df-rex 3052  df-reu 3053  df-in 3718  df-ss 3725 This theorem is referenced by:  euelss  4053  riotass  6798  adjbdln  29247
 Copyright terms: Public domain W3C validator