MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem5 Structured version   Visualization version   GIF version

Theorem reusv2lem5 4843
Description: Lemma for reusv2 4844. (Contributed by NM, 4-Jan-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2lem5 ((∀𝑦𝐵 𝐶𝐴𝐵 ≠ ∅) → (∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem reusv2lem5
StepHypRef Expression
1 tru 1484 . . . . . . . . 9
2 biimt 350 . . . . . . . . 9 ((𝐶𝐴 ∧ ⊤) → (𝑥 = 𝐶 ↔ ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶)))
31, 2mpan2 706 . . . . . . . 8 (𝐶𝐴 → (𝑥 = 𝐶 ↔ ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶)))
4 ibar 525 . . . . . . . 8 (𝐶𝐴 → (𝑥 = 𝐶 ↔ (𝐶𝐴𝑥 = 𝐶)))
53, 4bitr3d 270 . . . . . . 7 (𝐶𝐴 → (((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ (𝐶𝐴𝑥 = 𝐶)))
6 eleq1 2686 . . . . . . . 8 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
76pm5.32ri 669 . . . . . . 7 ((𝑥𝐴𝑥 = 𝐶) ↔ (𝐶𝐴𝑥 = 𝐶))
85, 7syl6bbr 278 . . . . . 6 (𝐶𝐴 → (((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ (𝑥𝐴𝑥 = 𝐶)))
98ralimi 2948 . . . . 5 (∀𝑦𝐵 𝐶𝐴 → ∀𝑦𝐵 (((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ (𝑥𝐴𝑥 = 𝐶)))
10 ralbi 3063 . . . . 5 (∀𝑦𝐵 (((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ (𝑥𝐴𝑥 = 𝐶)) → (∀𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝑥𝐴𝑥 = 𝐶)))
119, 10syl 17 . . . 4 (∀𝑦𝐵 𝐶𝐴 → (∀𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ ∀𝑦𝐵 (𝑥𝐴𝑥 = 𝐶)))
1211eubidv 2489 . . 3 (∀𝑦𝐵 𝐶𝐴 → (∃!𝑥𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ ∃!𝑥𝑦𝐵 (𝑥𝐴𝑥 = 𝐶)))
13 r19.28zv 4044 . . . 4 (𝐵 ≠ ∅ → (∀𝑦𝐵 (𝑥𝐴𝑥 = 𝐶) ↔ (𝑥𝐴 ∧ ∀𝑦𝐵 𝑥 = 𝐶)))
1413eubidv 2489 . . 3 (𝐵 ≠ ∅ → (∃!𝑥𝑦𝐵 (𝑥𝐴𝑥 = 𝐶) ↔ ∃!𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝑥 = 𝐶)))
1512, 14sylan9bb 735 . 2 ((∀𝑦𝐵 𝐶𝐴𝐵 ≠ ∅) → (∃!𝑥𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶) ↔ ∃!𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝑥 = 𝐶)))
161biantrur 527 . . . . 5 (𝑥 = 𝐶 ↔ (⊤ ∧ 𝑥 = 𝐶))
1716rexbii 3036 . . . 4 (∃𝑦𝐵 𝑥 = 𝐶 ↔ ∃𝑦𝐵 (⊤ ∧ 𝑥 = 𝐶))
1817reubii 3121 . . 3 (∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 (⊤ ∧ 𝑥 = 𝐶))
19 reusv2lem4 4842 . . 3 (∃!𝑥𝐴𝑦𝐵 (⊤ ∧ 𝑥 = 𝐶) ↔ ∃!𝑥𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶))
2018, 19bitri 264 . 2 (∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∃!𝑥𝑦𝐵 ((𝐶𝐴 ∧ ⊤) → 𝑥 = 𝐶))
21 df-reu 2915 . 2 (∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∃!𝑥(𝑥𝐴 ∧ ∀𝑦𝐵 𝑥 = 𝐶))
2215, 20, 213bitr4g 303 1 ((∀𝑦𝐵 𝐶𝐴𝐵 ≠ ∅) → (∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶 ↔ ∃!𝑥𝐴𝑦𝐵 𝑥 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wtru 1481  wcel 1987  ∃!weu 2469  wne 2790  wral 2908  wrex 2909  ∃!wreu 2910  c0 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-nul 4759  ax-pow 4813
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-nul 3898
This theorem is referenced by:  reusv2  4844
  Copyright terms: Public domain W3C validator