MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revco Structured version   Visualization version   GIF version

Theorem revco 14184
Description: Mapping of words (i.e., a letterwise mapping) commutes with reversal. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
revco ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))

Proof of Theorem revco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wrdfn 13864 . . . . . . 7 (𝑊 ∈ Word 𝐴𝑊 Fn (0..^(♯‘𝑊)))
21ad2antrr 722 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑊 Fn (0..^(♯‘𝑊)))
3 lencl 13871 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℕ0)
43nn0zd 12073 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐴 → (♯‘𝑊) ∈ ℤ)
5 fzoval 13027 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
64, 5syl 17 . . . . . . . . . . 11 (𝑊 ∈ Word 𝐴 → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
76adantr 481 . . . . . . . . . 10 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
87eleq2d 2895 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↔ 𝑥 ∈ (0...((♯‘𝑊) − 1))))
98biimpa 477 . . . . . . . 8 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → 𝑥 ∈ (0...((♯‘𝑊) − 1)))
10 fznn0sub2 13002 . . . . . . . 8 (𝑥 ∈ (0...((♯‘𝑊) − 1)) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
119, 10syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0...((♯‘𝑊) − 1)))
127adantr 481 . . . . . . 7 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
1311, 12eleqtrrd 2913 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊)))
14 fvco2 6751 . . . . . 6 ((𝑊 Fn (0..^(♯‘𝑊)) ∧ (((♯‘𝑊) − 1) − 𝑥) ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
152, 13, 14syl2anc 584 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
16 lenco 14182 . . . . . . . . 9 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(𝐹𝑊)) = (♯‘𝑊))
1716oveq1d 7160 . . . . . . . 8 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → ((♯‘(𝐹𝑊)) − 1) = ((♯‘𝑊) − 1))
1817oveq1d 7160 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
1918adantr 481 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (((♯‘(𝐹𝑊)) − 1) − 𝑥) = (((♯‘𝑊) − 1) − 𝑥))
2019fveq2d 6667 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = ((𝐹𝑊)‘(((♯‘𝑊) − 1) − 𝑥)))
21 revfv 14113 . . . . . . 7 ((𝑊 ∈ Word 𝐴𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2221adantlr 711 . . . . . 6 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((reverse‘𝑊)‘𝑥) = (𝑊‘(((♯‘𝑊) − 1) − 𝑥)))
2322fveq2d 6667 . . . . 5 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → (𝐹‘((reverse‘𝑊)‘𝑥)) = (𝐹‘(𝑊‘(((♯‘𝑊) − 1) − 𝑥))))
2415, 20, 233eqtr4d 2863 . . . 4 (((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) ∧ 𝑥 ∈ (0..^(♯‘𝑊))) → ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥)) = (𝐹‘((reverse‘𝑊)‘𝑥)))
2524mpteq2dva 5152 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
2616oveq2d 7161 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(𝐹𝑊))) = (0..^(♯‘𝑊)))
2726mpteq1d 5146 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
28 revlen 14112 . . . . . 6 (𝑊 ∈ Word 𝐴 → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
2928adantr 481 . . . . 5 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (♯‘(reverse‘𝑊)) = (♯‘𝑊))
3029oveq2d 7161 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (0..^(♯‘(reverse‘𝑊))) = (0..^(♯‘𝑊)))
3130mpteq1d 5146 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘𝑊)) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3225, 27, 313eqtr4rd 2864 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
33 simpr 485 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝐹:𝐴𝐵)
34 revcl 14111 . . . . 5 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊) ∈ Word 𝐴)
35 wrdf 13854 . . . . 5 ((reverse‘𝑊) ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3634, 35syl 17 . . . 4 (𝑊 ∈ Word 𝐴 → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
3736adantr 481 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴)
38 fcompt 6887 . . 3 ((𝐹:𝐴𝐵 ∧ (reverse‘𝑊):(0..^(♯‘(reverse‘𝑊)))⟶𝐴) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
3933, 37, 38syl2anc 584 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (𝑥 ∈ (0..^(♯‘(reverse‘𝑊))) ↦ (𝐹‘((reverse‘𝑊)‘𝑥))))
40 ffun 6510 . . . 4 (𝐹:𝐴𝐵 → Fun 𝐹)
41 simpl 483 . . . 4 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → 𝑊 ∈ Word 𝐴)
42 cofunexg 7639 . . . 4 ((Fun 𝐹𝑊 ∈ Word 𝐴) → (𝐹𝑊) ∈ V)
4340, 41, 42syl2an2 682 . . 3 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹𝑊) ∈ V)
44 revval 14110 . . 3 ((𝐹𝑊) ∈ V → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4543, 44syl 17 . 2 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (reverse‘(𝐹𝑊)) = (𝑥 ∈ (0..^(♯‘(𝐹𝑊))) ↦ ((𝐹𝑊)‘(((♯‘(𝐹𝑊)) − 1) − 𝑥))))
4632, 39, 453eqtr4d 2863 1 ((𝑊 ∈ Word 𝐴𝐹:𝐴𝐵) → (𝐹 ∘ (reverse‘𝑊)) = (reverse‘(𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cmpt 5137  ccom 5552  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  0cc0 10525  1c1 10526  cmin 10858  cz 11969  ...cfz 12880  ..^cfzo 13021  chash 13678  Word cword 13849  reversecreverse 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-reverse 14109
This theorem is referenced by:  efginvrel1  18783
  Copyright terms: Public domain W3C validator