![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexanali | Structured version Visualization version GIF version |
Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005.) (Proof shortened by Wolf Lammen, 27-Dec-2019.) |
Ref | Expression |
---|---|
rexanali | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3134 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) | |
2 | iman 439 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | |
3 | 2 | ralbii 3118 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 ∧ ¬ 𝜓)) |
4 | 1, 3 | xchbinxr 324 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wral 3050 ∃wrex 3051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1854 df-ral 3055 df-rex 3056 |
This theorem is referenced by: nrexralim 3137 wfi 5874 qsqueeze 12245 ncoprmgcdne1b 15585 elcls 21099 ist1-2 21373 haust1 21378 t1sep 21396 bwth 21435 1stccnp 21487 filufint 21945 fclscf 22050 pmltpc 23439 ovolgelb 23468 itg2seq 23728 radcnvlt1 24391 pntlem3 25518 umgr2edg1 26323 umgr2edgneu 26326 archiabl 30082 ordtconnlem1 30300 ceqsralv2 31935 frpoind 32067 frind 32070 nosupbnd1lem5 32185 limsucncmpi 32771 matunitlindflem1 33736 ftc1anclem5 33820 clsk3nimkb 38858 |
Copyright terms: Public domain | W3C validator |