![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexanuz2 | Structured version Visualization version GIF version |
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.) |
Ref | Expression |
---|---|
rexuz3.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
Ref | Expression |
---|---|
rexanuz2 | ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 11880 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | rexuz3.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
3 | 1, 2 | eleq2s 2853 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → 𝑀 ∈ ℤ) |
4 | 3 | a1d 25 | . . 3 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ)) |
5 | 4 | rexlimiv 3161 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) → 𝑀 ∈ ℤ) |
6 | 3 | a1d 25 | . . . 4 ⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ)) |
7 | 6 | rexlimiv 3161 | . . 3 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 → 𝑀 ∈ ℤ) |
8 | 7 | adantr 472 | . 2 ⊢ ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) → 𝑀 ∈ ℤ) |
9 | 2 | rexuz3 14283 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓))) |
10 | 2 | rexuz3 14283 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑)) |
11 | 2 | rexuz3 14283 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
12 | 10, 11 | anbi12d 749 | . . . 4 ⊢ (𝑀 ∈ ℤ → ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
13 | rexanuz 14280 | . . . 4 ⊢ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) | |
14 | 12, 13 | syl6rbbr 279 | . . 3 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
15 | 9, 14 | bitrd 268 | . 2 ⊢ (𝑀 ∈ ℤ → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓))) |
16 | 5, 8, 15 | pm5.21nii 367 | 1 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝜑 ∧ 𝜓) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜑 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∀wral 3046 ∃wrex 3047 ‘cfv 6045 ℤcz 11565 ℤ≥cuz 11875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-pre-lttri 10198 ax-pre-lttrn 10199 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-po 5183 df-so 5184 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-neg 10457 df-z 11566 df-uz 11876 |
This theorem is referenced by: climuni 14478 2clim 14498 climcn2 14518 lmmo 21382 txlm 21649 cmetcaulem 23282 iscmet3lem2 23286 ulmdvlem3 24351 rexanuz3 39770 fnlimabslt 40410 liminflimsupclim 40538 stoweidlem7 40723 smflimlem3 41483 |
Copyright terms: Public domain | W3C validator |