Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexdiv Structured version   Visualization version   GIF version

Theorem rexdiv 29443
Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
rexdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))

Proof of Theorem rexdiv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 redivcl 10696 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 9978 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 9978 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 id 22 . . . . . 6 (𝐵 ≠ 0 → 𝐵 ≠ 0)
52, 3, 43anim123i 1245 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divcan2 10645 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
8 oveq2 6618 . . . . . 6 (𝑥 = (𝐴 / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (𝐴 / 𝐵)))
98eqeq1d 2623 . . . . 5 (𝑥 = (𝐴 / 𝐵) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
109rspcev 3298 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ (𝐵 · (𝐴 / 𝐵)) = 𝐴) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
111, 7, 10syl2anc 692 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
12 receu 10624 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
135, 12syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
14 ax-resscn 9945 . . . 4 ℝ ⊆ ℂ
15 id 22 . . . . 5 ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
1615rgenw 2919 . . . 4 𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
17 riotass2 6598 . . . 4 (((ℝ ⊆ ℂ ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1814, 16, 17mpanl12 717 . . 3 ((∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1911, 13, 18syl2anc 692 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
20 rexr 10037 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 xdivval 29436 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
2220, 21syl3an1 1356 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23 ressxr 10035 . . . . 5 ℝ ⊆ ℝ*
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ℝ ⊆ ℝ*)
25 rexmul 12052 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ·e 𝑥) = (𝐵 · 𝑥))
2625eqeq1d 2623 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
2726biimprd 238 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
2827ralrimiva 2961 . . . . 5 (𝐵 ∈ ℝ → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
29283ad2ant2 1081 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
30 xreceu 29439 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
3120, 30syl3an1 1356 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
32 riotass2 6598 . . . 4 (((ℝ ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3324, 29, 11, 31, 32syl22anc 1324 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3422, 33eqtr4d 2658 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
35 divval 10639 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
365, 35syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
3719, 34, 363eqtr4d 2665 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  ∃!wreu 2909  wss 3559  crio 6570  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888   · cmul 9893  *cxr 10025   / cdiv 10636   ·e cxmu 11897   /𝑒 cxdiv 29434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-xneg 11898  df-xmul 11900  df-xdiv 29435
This theorem is referenced by:  xdivid  29445  xdiv0  29446  rpxdivcld  29451  esumdivc  29950  probmeasb  30297  coinfliplem  30345
  Copyright terms: Public domain W3C validator