MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexfiuz Structured version   Visualization version   GIF version

Theorem rexfiuz 14709
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑘,𝑛,𝐴   𝜑,𝑗
Allowed substitution hints:   𝜑(𝑘,𝑛)

Proof of Theorem rexfiuz
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3407 . . . 4 (𝑥 = ∅ → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ ∅ 𝜑))
21rexralbidv 3303 . . 3 (𝑥 = ∅ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑))
3 raleq 3407 . . 3 (𝑥 = ∅ → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
42, 3bibi12d 348 . 2 (𝑥 = ∅ → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
5 raleq 3407 . . . 4 (𝑥 = 𝑦 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑦 𝜑))
65rexralbidv 3303 . . 3 (𝑥 = 𝑦 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑))
7 raleq 3407 . . 3 (𝑥 = 𝑦 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
86, 7bibi12d 348 . 2 (𝑥 = 𝑦 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
9 raleq 3407 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥 𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
109rexralbidv 3303 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑))
11 raleq 3407 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1210, 11bibi12d 348 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
13 raleq 3407 . . . 4 (𝑥 = 𝐴 → (∀𝑛𝑥 𝜑 ↔ ∀𝑛𝐴 𝜑))
1413rexralbidv 3303 . . 3 (𝑥 = 𝐴 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑))
15 raleq 3407 . . 3 (𝑥 = 𝐴 → (∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
1614, 15bibi12d 348 . 2 (𝑥 = 𝐴 → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑥 𝜑 ↔ ∀𝑛𝑥𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
17 0z 11995 . . . . 5 0 ∈ ℤ
1817ne0ii 4305 . . . 4 ℤ ≠ ∅
19 ral0 4458 . . . . 5 𝑛 ∈ ∅ 𝜑
2019rgen2w 3153 . . . 4 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
21 r19.2z 4442 . . . 4 ((ℤ ≠ ∅ ∧ ∀𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑)
2218, 20, 21mp2an 690 . . 3 𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑
23 ral0 4458 . . 3 𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑
2422, 232th 266 . 2 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ ∅ 𝜑 ↔ ∀𝑛 ∈ ∅ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)
25 anbi1 633 . . . 4 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
26 rexanuz 14707 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
27 ralunb 4169 . . . . . . 7 (∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
2827ralbii 3167 . . . . . 6 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
2928rexbii 3249 . . . . 5 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}𝜑))
30 ralsnsg 4610 . . . . . . . 8 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
31 ralcom 3356 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑)
32 ralsnsg 4610 . . . . . . . . . . 11 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∀𝑘 ∈ (ℤ𝑗)𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3331, 32syl5bb 285 . . . . . . . . . 10 (𝑧 ∈ V → (∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑[𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
3433rexbidv 3299 . . . . . . . . 9 (𝑧 ∈ V → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑))
35 sbcrex 3860 . . . . . . . . 9 ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ [𝑧 / 𝑛]𝑘 ∈ (ℤ𝑗)𝜑)
3634, 35syl6rbbr 292 . . . . . . . 8 (𝑧 ∈ V → ([𝑧 / 𝑛]𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
3730, 36bitrd 281 . . . . . . 7 (𝑧 ∈ V → (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
3837elv 3501 . . . . . 6 (∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑)
3938anbi2i 624 . . . . 5 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ {𝑧}𝜑))
4026, 29, 393bitr4i 305 . . . 4 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
41 ralunb 4169 . . . 4 (∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ∧ ∀𝑛 ∈ {𝑧}∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4225, 40, 413bitr4g 316 . . 3 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
4342a1i 11 . 2 (𝑦 ∈ Fin → ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝑦 𝜑 ↔ ∀𝑛𝑦𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛 ∈ (𝑦 ∪ {𝑧})𝜑 ↔ ∀𝑛 ∈ (𝑦 ∪ {𝑧})∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
444, 8, 12, 16, 24, 43findcard2 8760 1 (𝐴 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)∀𝑛𝐴 𝜑 ↔ ∀𝑛𝐴𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  Vcvv 3496  [wsbc 3774  cun 3936  c0 4293  {csn 4569  cfv 6357  Fincfn 8511  0cc0 10539  cz 11984  cuz 12246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-addrcl 10600  ax-rnegex 10610  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-om 7583  df-1o 8104  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-neg 10875  df-z 11985  df-uz 12247
This theorem is referenced by:  uniioombllem6  24191  rrncmslem  35112
  Copyright terms: Public domain W3C validator