![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rexfrabdioph | Structured version Visualization version GIF version |
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.) |
Ref | Expression |
---|---|
rexfrabdioph.1 | ⊢ 𝑀 = (𝑁 + 1) |
Ref | Expression |
---|---|
rexfrabdioph | ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑢(ℕ0 ↑𝑚 (1...𝑁)) | |
2 | nfcv 2894 | . . 3 ⊢ Ⅎ𝑎(ℕ0 ↑𝑚 (1...𝑁)) | |
3 | nfv 1984 | . . 3 ⊢ Ⅎ𝑎∃𝑣 ∈ ℕ0 𝜑 | |
4 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑢ℕ0 | |
5 | nfsbc1v 3588 | . . . 4 ⊢ Ⅎ𝑢[𝑎 / 𝑢][𝑏 / 𝑣]𝜑 | |
6 | 4, 5 | nfrex 3137 | . . 3 ⊢ Ⅎ𝑢∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑 |
7 | nfv 1984 | . . . . 5 ⊢ Ⅎ𝑏𝜑 | |
8 | nfsbc1v 3588 | . . . . 5 ⊢ Ⅎ𝑣[𝑏 / 𝑣]𝜑 | |
9 | sbceq1a 3579 | . . . . 5 ⊢ (𝑣 = 𝑏 → (𝜑 ↔ [𝑏 / 𝑣]𝜑)) | |
10 | 7, 8, 9 | cbvrex 3299 | . . . 4 ⊢ (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑) |
11 | sbceq1a 3579 | . . . . 5 ⊢ (𝑢 = 𝑎 → ([𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) | |
12 | 11 | rexbidv 3182 | . . . 4 ⊢ (𝑢 = 𝑎 → (∃𝑏 ∈ ℕ0 [𝑏 / 𝑣]𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
13 | 10, 12 | syl5bb 272 | . . 3 ⊢ (𝑢 = 𝑎 → (∃𝑣 ∈ ℕ0 𝜑 ↔ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑)) |
14 | 1, 2, 3, 6, 13 | cbvrab 3330 | . 2 ⊢ {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} |
15 | rexfrabdioph.1 | . . 3 ⊢ 𝑀 = (𝑁 + 1) | |
16 | dfsbcq 3570 | . . . 4 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑏 / 𝑣]𝜑 ↔ [(𝑡‘𝑀) / 𝑣]𝜑)) | |
17 | 16 | sbcbidv 3623 | . . 3 ⊢ (𝑏 = (𝑡‘𝑀) → ([𝑎 / 𝑢][𝑏 / 𝑣]𝜑 ↔ [𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) |
18 | dfsbcq 3570 | . . 3 ⊢ (𝑎 = (𝑡 ↾ (1...𝑁)) → ([𝑎 / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑)) | |
19 | 15, 17, 18 | rexrabdioph 37852 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑎 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 [𝑎 / 𝑢][𝑏 / 𝑣]𝜑} ∈ (Dioph‘𝑁)) |
20 | 14, 19 | syl5eqel 2835 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0 ↑𝑚 (1...𝑀)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0 ↑𝑚 (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∃wrex 3043 {crab 3046 [wsbc 3568 ↾ cres 5260 ‘cfv 6041 (class class class)co 6805 ↑𝑚 cmap 8015 1c1 10121 + caddc 10123 ℕ0cn0 11476 ...cfz 12511 Diophcdioph 37812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-inf2 8703 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-cda 9174 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-hash 13304 df-mzpcl 37780 df-mzp 37781 df-dioph 37813 |
This theorem is referenced by: 2rexfrabdioph 37854 3rexfrabdioph 37855 7rexfrabdioph 37858 rmxdioph 38077 expdiophlem2 38083 |
Copyright terms: Public domain | W3C validator |