![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexiunxp | Structured version Visualization version GIF version |
Description: Write a double restricted quantification as one universal quantifier. In this version of rexxp 5297, 𝐵(𝑦) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
ralxp.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexiunxp | ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxp.1 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 307 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | raliunxp 5294 | . . . 4 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓) |
4 | ralnex 3021 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
5 | 4 | ralbii 3009 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
6 | 3, 5 | bitri 264 | . . 3 ⊢ (∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
7 | 6 | notbii 309 | . 2 ⊢ (¬ ∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
8 | dfrex2 3025 | . 2 ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵) ¬ 𝜑) | |
9 | dfrex2 3025 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
10 | 7, 8, 9 | 3bitr4i 292 | 1 ⊢ (∃𝑥 ∈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1523 ∀wral 2941 ∃wrex 2942 {csn 4210 〈cop 4216 ∪ ciun 4552 × cxp 5141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-iun 4554 df-opab 4746 df-xp 5149 df-rel 5150 |
This theorem is referenced by: rexxp 5297 fsumvma 24983 cvmliftlem15 31406 filnetlem4 32501 |
Copyright terms: Public domain | W3C validator |