MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rextp Structured version   Visualization version   GIF version

Theorem rextp 4219
Description: Convert a quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
raltp.1 𝐴 ∈ V
raltp.2 𝐵 ∈ V
raltp.3 𝐶 ∈ V
raltp.4 (𝑥 = 𝐴 → (𝜑𝜓))
raltp.5 (𝑥 = 𝐵 → (𝜑𝜒))
raltp.6 (𝑥 = 𝐶 → (𝜑𝜃))
Assertion
Ref Expression
rextp (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rextp
StepHypRef Expression
1 raltp.1 . 2 𝐴 ∈ V
2 raltp.2 . 2 𝐵 ∈ V
3 raltp.3 . 2 𝐶 ∈ V
4 raltp.4 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
5 raltp.5 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
6 raltp.6 . . 3 (𝑥 = 𝐶 → (𝜑𝜃))
74, 5, 6rextpg 4215 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
81, 2, 3, 7mp3an 1421 1 (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3o 1035   = wceq 1480  wcel 1987  wrex 2909  Vcvv 3190  {ctp 4159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2914  df-v 3192  df-sbc 3423  df-un 3565  df-sn 4156  df-pr 4158  df-tp 4160
This theorem is referenced by:  1cubr  24503
  Copyright terms: Public domain W3C validator