MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexun Structured version   Visualization version   GIF version

Theorem rexun 4168
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 3146 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
2 19.43 1883 . . 3 (∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
3 elun 4127 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43anbi1i 625 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
5 andir 1005 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
64, 5bitri 277 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
76exbii 1848 . . 3 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 df-rex 3146 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
9 df-rex 3146 . . . 4 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
108, 9orbi12i 911 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
112, 7, 103bitr4i 305 . 2 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
121, 11bitri 277 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  wo 843  wex 1780  wcel 2114  wrex 3141  cun 3936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rex 3146  df-v 3498  df-un 3943
This theorem is referenced by:  rexprgf  4633  rextpg  4637  iunxun  5018  unima  6741  oarec  8190  zornn0g  9929  scshwfzeqfzo  14190  rpnnen2lem12  15580  dvdsprmpweqnn  16223  vdwlem6  16324  pmatcollpw3fi1  21398  cmpfi  22018  elntg2  26773  satfvsucsuc  32614  poimirlem25  34919
  Copyright terms: Public domain W3C validator