MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuz3 Structured version   Visualization version   GIF version

Theorem rexuz3 14030
Description: Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
rexuz3 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Distinct variable groups:   𝑗,𝑀   𝜑,𝑗   𝑗,𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝑀(𝑘)

Proof of Theorem rexuz3
StepHypRef Expression
1 id 22 . . . . 5 (𝑘𝑍𝑘𝑍)
21rgen 2917 . . . 4 𝑘𝑍 𝑘𝑍
3 fveq2 6153 . . . . . . 7 (𝑗 = 𝑀 → (ℤ𝑗) = (ℤ𝑀))
4 rexuz3.1 . . . . . . 7 𝑍 = (ℤ𝑀)
53, 4syl6eqr 2673 . . . . . 6 (𝑗 = 𝑀 → (ℤ𝑗) = 𝑍)
65raleqdv 3136 . . . . 5 (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ↔ ∀𝑘𝑍 𝑘𝑍))
76rspcev 3298 . . . 4 ((𝑀 ∈ ℤ ∧ ∀𝑘𝑍 𝑘𝑍) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
82, 7mpan2 706 . . 3 (𝑀 ∈ ℤ → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
98biantrurd 529 . 2 (𝑀 ∈ ℤ → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑 ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑)))
104uztrn2 11657 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
1110a1d 25 . . . . . . . . 9 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑𝑘𝑍))
1211ancrd 576 . . . . . . . 8 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → (𝜑 → (𝑘𝑍𝜑)))
1312ralimdva 2957 . . . . . . 7 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
14 eluzelz 11649 . . . . . . . 8 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1514, 4eleq2s 2716 . . . . . . 7 (𝑗𝑍𝑗 ∈ ℤ)
1613, 15jctild 565 . . . . . 6 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)𝜑 → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))))
1716imp 445 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) → (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
18 uzid 11654 . . . . . . 7 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
19 simpl 473 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝑘𝑍)
2019ralimi 2947 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍)
21 eleq1 2686 . . . . . . . 8 (𝑘 = 𝑗 → (𝑘𝑍𝑗𝑍))
2221rspcva 3296 . . . . . . 7 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍) → 𝑗𝑍)
2318, 20, 22syl2an 494 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → 𝑗𝑍)
24 simpr 477 . . . . . . . 8 ((𝑘𝑍𝜑) → 𝜑)
2524ralimi 2947 . . . . . . 7 (∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2625adantl 482 . . . . . 6 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → ∀𝑘 ∈ (ℤ𝑗)𝜑)
2723, 26jca 554 . . . . 5 ((𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)) → (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑))
2817, 27impbii 199 . . . 4 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑)))
2928rexbii2 3033 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑))
30 rexanuz 14027 . . 3 (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝑘𝑍𝜑) ↔ (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
3129, 30bitr2i 265 . 2 ((∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝑘𝑍 ∧ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑)
329, 31syl6rbb 277 1 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝜑 ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cfv 5852  cz 11329  cuz 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-pre-lttri 9962  ax-pre-lttrn 9963
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-neg 10221  df-z 11330  df-uz 11640
This theorem is referenced by:  rexanuz2  14031  cau4  14038  clim2  14177  isercoll  14340  lmbr2  20986  lmff  21028  lmmbr3  22981  iscau3  22999  uniioombllem6  23279  ulmres  24063  rrncmslem  33298  clim2f  39300  clim2f2  39334
  Copyright terms: Public domain W3C validator