Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rezh Structured version   Visualization version   GIF version

Theorem rezh 29789
Description: The -module of is a normed module. (Contributed by Thierry Arnoux, 14-Feb-2018.)
Assertion
Ref Expression
rezh (ℤMod‘ℝfld) ∈ NrmMod

Proof of Theorem rezh
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnnrg 22489 . . . . 5 fld ∈ NrmRing
2 resubdrg 19868 . . . . . 6 (ℝ ∈ (SubRing‘ℂfld) ∧ ℝfld ∈ DivRing)
32simpli 474 . . . . 5 ℝ ∈ (SubRing‘ℂfld)
4 df-refld 19865 . . . . . 6 fld = (ℂflds ℝ)
54subrgnrg 22382 . . . . 5 ((ℂfld ∈ NrmRing ∧ ℝ ∈ (SubRing‘ℂfld)) → ℝfld ∈ NrmRing)
61, 3, 5mp2an 707 . . . 4 fld ∈ NrmRing
7 eqid 2626 . . . . 5 (ℤMod‘ℝfld) = (ℤMod‘ℝfld)
87zhmnrg 29785 . . . 4 (ℝfld ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmRing)
9 nrgngp 22371 . . . 4 ((ℤMod‘ℝfld) ∈ NrmRing → (ℤMod‘ℝfld) ∈ NrmGrp)
106, 8, 9mp2b 10 . . 3 (ℤMod‘ℝfld) ∈ NrmGrp
11 nrgring 22372 . . . . 5 (ℝfld ∈ NrmRing → ℝfld ∈ Ring)
12 ringabl 18496 . . . . 5 (ℝfld ∈ Ring → ℝfld ∈ Abel)
136, 11, 12mp2b 10 . . . 4 fld ∈ Abel
147zlmlmod 19785 . . . 4 (ℝfld ∈ Abel ↔ (ℤMod‘ℝfld) ∈ LMod)
1513, 14mpbi 220 . . 3 (ℤMod‘ℝfld) ∈ LMod
16 zringnrg 22494 . . 3 ring ∈ NrmRing
1710, 15, 163pm3.2i 1237 . 2 ((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing)
18 simpl 473 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℤ)
1918zcnd 11427 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑧 ∈ ℂ)
20 simpr 477 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
2120recnd 10013 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
2219, 21absmuld 14122 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (abs‘(𝑧 · 𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
23 subrgsubg 18702 . . . . . . . . 9 (ℝ ∈ (SubRing‘ℂfld) → ℝ ∈ (SubGrp‘ℂfld))
243, 23ax-mp 5 . . . . . . . 8 ℝ ∈ (SubGrp‘ℂfld)
25 eqid 2626 . . . . . . . . 9 (.g‘ℂfld) = (.g‘ℂfld)
26 eqid 2626 . . . . . . . . . . 11 (.g‘ℝfld) = (.g‘ℝfld)
277, 26zlmvsca 19784 . . . . . . . . . 10 (.g‘ℝfld) = ( ·𝑠 ‘(ℤMod‘ℝfld))
2827eqcomi 2635 . . . . . . . . 9 ( ·𝑠 ‘(ℤMod‘ℝfld)) = (.g‘ℝfld)
2925, 4, 28subgmulg 17524 . . . . . . . 8 ((ℝ ∈ (SubGrp‘ℂfld) ∧ 𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
3024, 29mp3an1 1408 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥))
31 cnfldmulg 19692 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℂ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3221, 31syldan 487 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧(.g‘ℂfld)𝑥) = (𝑧 · 𝑥))
3330, 32eqtr3d 2662 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥) = (𝑧 · 𝑥))
3433fveq2d 6154 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = ((abs ↾ ℝ)‘(𝑧 · 𝑥)))
35 zre 11326 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℝ)
36 remulcl 9966 . . . . . . 7 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧 · 𝑥) ∈ ℝ)
37 fvres 6165 . . . . . . 7 ((𝑧 · 𝑥) ∈ ℝ → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3836, 37syl 17 . . . . . 6 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
3935, 38sylan 488 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧 · 𝑥)) = (abs‘(𝑧 · 𝑥)))
4034, 39eqtrd 2660 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (abs‘(𝑧 · 𝑥)))
41 fvres 6165 . . . . 5 (𝑧 ∈ ℤ → ((abs ↾ ℤ)‘𝑧) = (abs‘𝑧))
42 fvres 6165 . . . . 5 (𝑥 ∈ ℝ → ((abs ↾ ℝ)‘𝑥) = (abs‘𝑥))
4341, 42oveqan12d 6624 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)) = ((abs‘𝑧) · (abs‘𝑥)))
4422, 40, 433eqtr4d 2670 . . 3 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℝ) → ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥)))
4544rgen2 2974 . 2 𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))
46 rebase 19866 . . . 4 ℝ = (Base‘ℝfld)
477, 46zlmbas 19780 . . 3 ℝ = (Base‘(ℤMod‘ℝfld))
48 recusp 23073 . . . . 5 fld ∈ CUnifSp
4948elexi 3204 . . . 4 fld ∈ V
50 cnring 19682 . . . . . . 7 fld ∈ Ring
51 ringmnd 18472 . . . . . . 7 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
5250, 51ax-mp 5 . . . . . 6 fld ∈ Mnd
53 0re 9985 . . . . . 6 0 ∈ ℝ
54 ax-resscn 9938 . . . . . 6 ℝ ⊆ ℂ
55 cnfldbas 19664 . . . . . . 7 ℂ = (Base‘ℂfld)
56 cnfld0 19684 . . . . . . 7 0 = (0g‘ℂfld)
57 cnfldnm 22487 . . . . . . 7 abs = (norm‘ℂfld)
584, 55, 56, 57ressnm 29428 . . . . . 6 ((ℂfld ∈ Mnd ∧ 0 ∈ ℝ ∧ ℝ ⊆ ℂ) → (abs ↾ ℝ) = (norm‘ℝfld))
5952, 53, 54, 58mp3an 1421 . . . . 5 (abs ↾ ℝ) = (norm‘ℝfld)
607, 59zlmnm 29784 . . . 4 (ℝfld ∈ V → (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld)))
6149, 60ax-mp 5 . . 3 (abs ↾ ℝ) = (norm‘(ℤMod‘ℝfld))
62 eqid 2626 . . 3 ( ·𝑠 ‘(ℤMod‘ℝfld)) = ( ·𝑠 ‘(ℤMod‘ℝfld))
637zlmsca 19783 . . . 4 (ℝfld ∈ V → ℤring = (Scalar‘(ℤMod‘ℝfld)))
6449, 63ax-mp 5 . . 3 ring = (Scalar‘(ℤMod‘ℝfld))
65 zringbas 19738 . . 3 ℤ = (Base‘ℤring)
66 zringnm 29778 . . . 4 (norm‘ℤring) = (abs ↾ ℤ)
6766eqcomi 2635 . . 3 (abs ↾ ℤ) = (norm‘ℤring)
6847, 61, 62, 64, 65, 67isnlm 22384 . 2 ((ℤMod‘ℝfld) ∈ NrmMod ↔ (((ℤMod‘ℝfld) ∈ NrmGrp ∧ (ℤMod‘ℝfld) ∈ LMod ∧ ℤring ∈ NrmRing) ∧ ∀𝑧 ∈ ℤ ∀𝑥 ∈ ℝ ((abs ↾ ℝ)‘(𝑧( ·𝑠 ‘(ℤMod‘ℝfld))𝑥)) = (((abs ↾ ℤ)‘𝑧) · ((abs ↾ ℝ)‘𝑥))))
6917, 45, 68mpbir2an 954 1 (ℤMod‘ℝfld) ∈ NrmMod
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  wss 3560  cres 5081  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881   · cmul 9886  cz 11322  abscabs 13903  Scalarcsca 15860   ·𝑠 cvsca 15861  Mndcmnd 17210  .gcmg 17456  SubGrpcsubg 17504  Abelcabl 18110  Ringcrg 18463  DivRingcdr 18663  SubRingcsubrg 18692  LModclmod 18779  fldccnfld 19660  ringzring 19732  ℤModczlm 19763  fldcrefld 19864  CUnifSpccusp 22006  normcnm 22286  NrmGrpcngp 22287  NrmRingcnrg 22289  NrmModcnlm 22290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-tpos 7298  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12118  df-ico 12120  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-grp 17341  df-minusg 17342  df-sbg 17343  df-mulg 17457  df-subg 17507  df-cntz 17666  df-cmn 18111  df-abl 18112  df-mgp 18406  df-ur 18418  df-ring 18465  df-cring 18466  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-dvr 18599  df-drng 18665  df-subrg 18694  df-abv 18733  df-lmod 18781  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-metu 19659  df-cnfld 19661  df-zring 19733  df-zlm 19767  df-refld 19865  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-cn 20936  df-cnp 20937  df-haus 21024  df-cmp 21095  df-tx 21270  df-hmeo 21463  df-fil 21555  df-flim 21648  df-fcls 21650  df-ust 21909  df-utop 21940  df-uss 21965  df-usp 21966  df-cfilu 21996  df-cusp 22007  df-xms 22030  df-ms 22031  df-tms 22032  df-nm 22292  df-ngp 22293  df-nrg 22295  df-nlm 22296  df-cncf 22584  df-cfil 22956  df-cmet 22958  df-cms 23035
This theorem is referenced by:  rerrext  29827
  Copyright terms: Public domain W3C validator