Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre1 Structured version   Visualization version   GIF version

Theorem rfcnpre1 41266
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre1.1 𝑥𝐵
rfcnpre1.2 𝑥𝐹
rfcnpre1.3 𝑥𝜑
rfcnpre1.4 𝐾 = (topGen‘ran (,))
rfcnpre1.5 𝑋 = 𝐽
rfcnpre1.6 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
rfcnpre1.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre1 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre1.3 . . . 4 𝑥𝜑
2 rfcnpre1.2 . . . . . 6 𝑥𝐹
32nfcnv 5742 . . . . 5 𝑥𝐹
4 rfcnpre1.1 . . . . . 6 𝑥𝐵
5 nfcv 2975 . . . . . 6 𝑥(,)
6 nfcv 2975 . . . . . 6 𝑥+∞
74, 5, 6nfov 7178 . . . . 5 𝑥(𝐵(,)+∞)
83, 7nfima 5930 . . . 4 𝑥(𝐹 “ (𝐵(,)+∞))
9 nfrab1 3383 . . . 4 𝑥{𝑥𝑋𝐵 < (𝐹𝑥)}
10 rfcnpre1.8 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
11 cntop1 21840 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
13 rfcnpre1.5 . . . . . . . . . . . 12 𝑋 = 𝐽
14 istopon 21512 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
1512, 13, 14sylanblrc 592 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 rfcnpre1.4 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
17 retopon 23364 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
1816, 17eqeltri 2907 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℝ)
19 iscn 21835 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2015, 18, 19sylancl 588 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2110, 20mpbid 234 . . . . . . . . 9 (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
2221simpld 497 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2322ffvelrnda 6844 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
24 rfcnpre1.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
25 elioopnf 12823 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2726baibd 542 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2823, 27syldan 593 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2928pm5.32da 581 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
30 ffn 6507 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
31 elpreima 6821 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
3222, 30, 313syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
33 rabid 3377 . . . . . 6 (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥)))
3433a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
3529, 32, 343bitr4d 313 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)}))
361, 8, 9, 35eqrd 3984 . . 3 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = {𝑥𝑋𝐵 < (𝐹𝑥)})
37 rfcnpre1.6 . . 3 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
3836, 37syl6eqr 2872 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = 𝐴)
39 iooretop 23366 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
4039, 16eleqtrri 2910 . . 3 (𝐵(,)+∞) ∈ 𝐾
41 cnima 21865 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4210, 40, 41sylancl 588 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4338, 42eqeltrrd 2912 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wnf 1778  wcel 2108  wnfc 2959  wral 3136  {crab 3140   cuni 4830   class class class wbr 5057  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  cr 10528  +∞cpnf 10664  *cxr 10666   < clt 10667  (,)cioo 12730  topGenctg 16703  Topctop 21493  TopOnctopon 21510   Cn ccn 21824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-ioo 12734  df-topgen 16709  df-top 21494  df-topon 21511  df-bases 21546  df-cn 21827
This theorem is referenced by:  stoweidlem46  42321
  Copyright terms: Public domain W3C validator