Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre4 Structured version   Visualization version   GIF version

Theorem rfcnpre4 38676
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values smaller or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre4.1 𝑡𝐹
rfcnpre4.2 𝐾 = (topGen‘ran (,))
rfcnpre4.3 𝑇 = 𝐽
rfcnpre4.4 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
rfcnpre4.5 (𝜑𝐵 ∈ ℝ)
rfcnpre4.6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre4 (𝜑𝐴 ∈ (Clsd‘𝐽))
Distinct variable groups:   𝑡,𝐵   𝑡,𝑇
Allowed substitution hints:   𝜑(𝑡)   𝐴(𝑡)   𝐹(𝑡)   𝐽(𝑡)   𝐾(𝑡)

Proof of Theorem rfcnpre4
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre4.2 . . . . . . . 8 𝐾 = (topGen‘ran (,))
2 rfcnpre4.3 . . . . . . . 8 𝑇 = 𝐽
3 eqid 2621 . . . . . . . 8 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
4 rfcnpre4.6 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
51, 2, 3, 4fcnre 38667 . . . . . . 7 (𝜑𝐹:𝑇⟶ℝ)
6 ffn 6002 . . . . . . 7 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
7 elpreima 6293 . . . . . . 7 (𝐹 Fn 𝑇 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
85, 6, 73syl 18 . . . . . 6 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵))))
9 mnfxr 10040 . . . . . . . . 9 -∞ ∈ ℝ*
10 rfcnpre4.5 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ)
1110rexrd 10033 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ*)
1211adantr 481 . . . . . . . . 9 ((𝜑𝑠𝑇) → 𝐵 ∈ ℝ*)
13 elioc1 12159 . . . . . . . . 9 ((-∞ ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
149, 12, 13sylancr 694 . . . . . . . 8 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)))
15 simpr3 1067 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵)) → (𝐹𝑠) ≤ 𝐵)
165ffvelrnda 6315 . . . . . . . . . . . 12 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1716rexrd 10033 . . . . . . . . . . 11 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ*)
1817adantr 481 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ*)
1916adantr 481 . . . . . . . . . . 11 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ∈ ℝ)
20 mnflt 11901 . . . . . . . . . . 11 ((𝐹𝑠) ∈ ℝ → -∞ < (𝐹𝑠))
2119, 20syl 17 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → -∞ < (𝐹𝑠))
22 simpr 477 . . . . . . . . . 10 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → (𝐹𝑠) ≤ 𝐵)
2318, 21, 223jca 1240 . . . . . . . . 9 (((𝜑𝑠𝑇) ∧ (𝐹𝑠) ≤ 𝐵) → ((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵))
2415, 23impbida 876 . . . . . . . 8 ((𝜑𝑠𝑇) → (((𝐹𝑠) ∈ ℝ* ∧ -∞ < (𝐹𝑠) ∧ (𝐹𝑠) ≤ 𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2514, 24bitrd 268 . . . . . . 7 ((𝜑𝑠𝑇) → ((𝐹𝑠) ∈ (-∞(,]𝐵) ↔ (𝐹𝑠) ≤ 𝐵))
2625pm5.32da 672 . . . . . 6 (𝜑 → ((𝑠𝑇 ∧ (𝐹𝑠) ∈ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
278, 26bitrd 268 . . . . 5 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵)))
28 nfcv 2761 . . . . . 6 𝑡𝑠
29 nfcv 2761 . . . . . 6 𝑡𝑇
30 rfcnpre4.1 . . . . . . . 8 𝑡𝐹
3130, 28nffv 6155 . . . . . . 7 𝑡(𝐹𝑠)
32 nfcv 2761 . . . . . . 7 𝑡
33 nfcv 2761 . . . . . . 7 𝑡𝐵
3431, 32, 33nfbr 4659 . . . . . 6 𝑡(𝐹𝑠) ≤ 𝐵
35 fveq2 6148 . . . . . . 7 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3635breq1d 4623 . . . . . 6 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ 𝐵 ↔ (𝐹𝑠) ≤ 𝐵))
3728, 29, 34, 36elrabf 3343 . . . . 5 (𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵} ↔ (𝑠𝑇 ∧ (𝐹𝑠) ≤ 𝐵))
3827, 37syl6bbr 278 . . . 4 (𝜑 → (𝑠 ∈ (𝐹 “ (-∞(,]𝐵)) ↔ 𝑠 ∈ {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}))
3938eqrdv 2619 . . 3 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵})
40 rfcnpre4.4 . . 3 𝐴 = {𝑡𝑇 ∣ (𝐹𝑡) ≤ 𝐵}
4139, 40syl6eqr 2673 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) = 𝐴)
42 iocmnfcld 22482 . . . . 5 (𝐵 ∈ ℝ → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
4310, 42syl 17 . . . 4 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘(topGen‘ran (,))))
441fveq2i 6151 . . . 4 (Clsd‘𝐾) = (Clsd‘(topGen‘ran (,)))
4543, 44syl6eleqr 2709 . . 3 (𝜑 → (-∞(,]𝐵) ∈ (Clsd‘𝐾))
46 cnclima 20982 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,]𝐵) ∈ (Clsd‘𝐾)) → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
474, 45, 46syl2anc 692 . 2 (𝜑 → (𝐹 “ (-∞(,]𝐵)) ∈ (Clsd‘𝐽))
4841, 47eqeltrrd 2699 1 (𝜑𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wnfc 2748  {crab 2911   cuni 4402   class class class wbr 4613  ccnv 5073  ran crn 5075  cima 5077   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  -∞cmnf 10016  *cxr 10017   < clt 10018  cle 10019  (,)cioo 12117  (,]cioc 12118  topGenctg 16019  Clsdccld 20730   Cn ccn 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-ioo 12121  df-ioc 12122  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-cld 20733  df-cn 20941
This theorem is referenced by:  stoweidlem59  39583
  Copyright terms: Public domain W3C validator