Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Visualization version   GIF version

Theorem rge0scvg 29769
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 15544. (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)

Proof of Theorem rge0scvg
Dummy variables 𝑗 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11667 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 11353 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → 1 ∈ ℤ)
3 rge0ssre 12219 . . . . . . 7 (0[,)+∞) ⊆ ℝ
4 fss 6015 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
53, 4mpan2 706 . . . . . 6 (𝐹:ℕ⟶(0[,)+∞) → 𝐹:ℕ⟶ℝ)
65ffvelrnda 6316 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
71, 2, 6serfre 12767 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → seq1( + , 𝐹):ℕ⟶ℝ)
8 frn 6012 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → ran seq1( + , 𝐹) ⊆ ℝ)
97, 8syl 17 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ⊆ ℝ)
109adantr 481 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ⊆ ℝ)
11 1nn 10976 . . . . 5 1 ∈ ℕ
12 fdm 6010 . . . . 5 (seq1( + , 𝐹):ℕ⟶ℝ → dom seq1( + , 𝐹) = ℕ)
1311, 12syl5eleqr 2711 . . . 4 (seq1( + , 𝐹):ℕ⟶ℝ → 1 ∈ dom seq1( + , 𝐹))
14 ne0i 3902 . . . . 5 (1 ∈ dom seq1( + , 𝐹) → dom seq1( + , 𝐹) ≠ ∅)
15 dm0rn0 5306 . . . . . 6 (dom seq1( + , 𝐹) = ∅ ↔ ran seq1( + , 𝐹) = ∅)
1615necon3bii 2848 . . . . 5 (dom seq1( + , 𝐹) ≠ ∅ ↔ ran seq1( + , 𝐹) ≠ ∅)
1714, 16sylib 208 . . . 4 (1 ∈ dom seq1( + , 𝐹) → ran seq1( + , 𝐹) ≠ ∅)
187, 13, 173syl 18 . . 3 (𝐹:ℕ⟶(0[,)+∞) → ran seq1( + , 𝐹) ≠ ∅)
1918adantr 481 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ran seq1( + , 𝐹) ≠ ∅)
20 1zzd 11353 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → 1 ∈ ℤ)
21 climdm 14214 . . . . . . 7 (seq1( + , 𝐹) ∈ dom ⇝ ↔ seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2221biimpi 206 . . . . . 6 (seq1( + , 𝐹) ∈ dom ⇝ → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
2322adantl 482 . . . . 5 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
247adantr 481 . . . . . 6 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → seq1( + , 𝐹):ℕ⟶ℝ)
2524ffvelrnda 6316 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ∈ ℝ)
261, 20, 23, 25climrecl 14243 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ)
27 simpr 477 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2823adantr 481 . . . . . 6 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → seq1( + , 𝐹) ⇝ ( ⇝ ‘seq1( + , 𝐹)))
29 simplll 797 . . . . . . 7 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
30 ffvelrn 6314 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (0[,)+∞))
313, 30sseldi 3586 . . . . . . 7 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
3229, 31sylancom 700 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
33 elrege0 12217 . . . . . . . . . 10 ((𝐹𝑗) ∈ (0[,)+∞) ↔ ((𝐹𝑗) ∈ ℝ ∧ 0 ≤ (𝐹𝑗)))
3433simprbi 480 . . . . . . . . 9 ((𝐹𝑗) ∈ (0[,)+∞) → 0 ≤ (𝐹𝑗))
3530, 34syl 17 . . . . . . . 8 ((𝐹:ℕ⟶(0[,)+∞) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3635adantlr 750 . . . . . . 7 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
3736adantlr 750 . . . . . 6 ((((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 0 ≤ (𝐹𝑗))
381, 27, 28, 32, 37climserle 14322 . . . . 5 (((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
3938ralrimiva 2965 . . . 4 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹)))
40 breq2 4622 . . . . . 6 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → ((seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4140ralbidv 2985 . . . . 5 (𝑥 = ( ⇝ ‘seq1( + , 𝐹)) → (∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))))
4241rspcev 3300 . . . 4 ((( ⇝ ‘seq1( + , 𝐹)) ∈ ℝ ∧ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ ( ⇝ ‘seq1( + , 𝐹))) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
4326, 39, 42syl2anc 692 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥)
44 ffn 6004 . . . . . 6 (seq1( + , 𝐹):ℕ⟶ℝ → seq1( + , 𝐹) Fn ℕ)
45 breq1 4621 . . . . . . 7 (𝑧 = (seq1( + , 𝐹)‘𝑘) → (𝑧𝑥 ↔ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4645ralrn 6319 . . . . . 6 (seq1( + , 𝐹) Fn ℕ → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
477, 44, 463syl 18 . . . . 5 (𝐹:ℕ⟶(0[,)+∞) → (∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4847rexbidv 3050 . . . 4 (𝐹:ℕ⟶(0[,)+∞) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
4948adantr 481 . . 3 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → (∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℕ (seq1( + , 𝐹)‘𝑘) ≤ 𝑥))
5043, 49mpbird 247 . 2 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥)
51 suprcl 10928 . 2 ((ran seq1( + , 𝐹) ⊆ ℝ ∧ ran seq1( + , 𝐹) ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ ran seq1( + , 𝐹)𝑧𝑥) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
5210, 19, 50, 51syl3anc 1323 1 ((𝐹:ℕ⟶(0[,)+∞) ∧ seq1( + , 𝐹) ∈ dom ⇝ ) → sup(ran seq1( + , 𝐹), ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  wral 2912  wrex 2913  wss 3560  c0 3896   class class class wbr 4618  dom cdm 5079  ran crn 5080   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  supcsup 8291  cr 9880  0cc0 9881  1c1 9882   + caddc 9884  +∞cpnf 10016   < clt 10019  cle 10020  cn 10965  [,)cico 12116  seqcseq 12738  cli 14144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-ico 12120  df-fz 12266  df-fl 12530  df-seq 12739  df-exp 12798  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-clim 14148  df-rlim 14149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator