![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmeql | Structured version Visualization version GIF version |
Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
rhmeql | ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 18773 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
2 | rhmghm 18773 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ (𝑆 GrpHom 𝑇)) | |
3 | ghmeql 17730 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) | |
4 | 1, 2, 3 | syl2an 493 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
5 | eqid 2651 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
6 | eqid 2651 | . . . 4 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
7 | 5, 6 | rhmmhm 18770 | . . 3 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
8 | 5, 6 | rhmmhm 18770 | . . 3 ⊢ (𝐺 ∈ (𝑆 RingHom 𝑇) → 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
9 | mhmeql 17411 | . . 3 ⊢ ((𝐹 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)) ∧ 𝐺 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))) | |
10 | 7, 8, 9 | syl2an 493 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))) |
11 | rhmrcl1 18767 | . . . 4 ⊢ (𝐹 ∈ (𝑆 RingHom 𝑇) → 𝑆 ∈ Ring) | |
12 | 11 | adantr 480 | . . 3 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → 𝑆 ∈ Ring) |
13 | 5 | issubrg3 18856 | . . 3 ⊢ (𝑆 ∈ Ring → (dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))))) |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆) ↔ (dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆) ∧ dom (𝐹 ∩ 𝐺) ∈ (SubMnd‘(mulGrp‘𝑆))))) |
15 | 4, 10, 14 | mpbir2and 977 | 1 ⊢ ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubRing‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ∩ cin 3606 dom cdm 5143 ‘cfv 5926 (class class class)co 6690 MndHom cmhm 17380 SubMndcsubmnd 17381 SubGrpcsubg 17635 GrpHom cghm 17704 mulGrpcmgp 18535 Ringcrg 18593 RingHom crh 18760 SubRingcsubrg 18824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-subg 17638 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-rnghom 18763 df-subrg 18826 |
This theorem is referenced by: evlseu 19564 |
Copyright terms: Public domain | W3C validator |