HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Visualization version   GIF version

Theorem riesz3i 28891
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
riesz3i 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Distinct variable group:   𝑤,𝑣,𝑇

Proof of Theorem riesz3i
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 27830 . . 3 0 ∈ ℋ
2 nlelch.1 . . . . . . 7 𝑇 ∈ LinFn
32lnfnfi 28870 . . . . . 6 𝑇: ℋ⟶ℂ
4 fveq2 6178 . . . . . . . . 9 ((⊥‘(null‘𝑇)) = 0 → (⊥‘(⊥‘(null‘𝑇))) = (⊥‘0))
5 nlelch.2 . . . . . . . . . . 11 𝑇 ∈ ContFn
62, 5nlelchi 28890 . . . . . . . . . 10 (null‘𝑇) ∈ C
76ococi 28234 . . . . . . . . 9 (⊥‘(⊥‘(null‘𝑇))) = (null‘𝑇)
8 choc0 28155 . . . . . . . . 9 (⊥‘0) = ℋ
94, 7, 83eqtr3g 2677 . . . . . . . 8 ((⊥‘(null‘𝑇)) = 0 → (null‘𝑇) = ℋ)
109eleq2d 2685 . . . . . . 7 ((⊥‘(null‘𝑇)) = 0 → (𝑣 ∈ (null‘𝑇) ↔ 𝑣 ∈ ℋ))
1110biimpar 502 . . . . . 6 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → 𝑣 ∈ (null‘𝑇))
12 elnlfn2 28758 . . . . . 6 ((𝑇: ℋ⟶ℂ ∧ 𝑣 ∈ (null‘𝑇)) → (𝑇𝑣) = 0)
133, 11, 12sylancr 694 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = 0)
14 hi02 27924 . . . . . 6 (𝑣 ∈ ℋ → (𝑣 ·ih 0) = 0)
1514adantl 482 . . . . 5 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑣 ·ih 0) = 0)
1613, 15eqtr4d 2657 . . . 4 (((⊥‘(null‘𝑇)) = 0𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih 0))
1716ralrimiva 2963 . . 3 ((⊥‘(null‘𝑇)) = 0 → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0))
18 oveq2 6643 . . . . . 6 (𝑤 = 0 → (𝑣 ·ih 𝑤) = (𝑣 ·ih 0))
1918eqeq2d 2630 . . . . 5 (𝑤 = 0 → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih 0)))
2019ralbidv 2983 . . . 4 (𝑤 = 0 → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)))
2120rspcev 3304 . . 3 ((0 ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 0)) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
221, 17, 21sylancr 694 . 2 ((⊥‘(null‘𝑇)) = 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
236choccli 28136 . . . 4 (⊥‘(null‘𝑇)) ∈ C
2423chne0i 28282 . . 3 ((⊥‘(null‘𝑇)) ≠ 0 ↔ ∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0)
2523cheli 28059 . . . . 5 (𝑢 ∈ (⊥‘(null‘𝑇)) → 𝑢 ∈ ℋ)
263ffvelrni 6344 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑇𝑢) ∈ ℂ)
2726adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑇𝑢) ∈ ℂ)
28 hicl 27907 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑢 ·ih 𝑢) ∈ ℂ)
2928anidms 676 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → (𝑢 ·ih 𝑢) ∈ ℂ)
3029adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ∈ ℂ)
31 his6 27926 . . . . . . . . . . . . 13 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) = 0 ↔ 𝑢 = 0))
3231necon3bid 2835 . . . . . . . . . . . 12 (𝑢 ∈ ℋ → ((𝑢 ·ih 𝑢) ≠ 0 ↔ 𝑢 ≠ 0))
3332biimpar 502 . . . . . . . . . . 11 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (𝑢 ·ih 𝑢) ≠ 0)
3427, 30, 33divcld 10786 . . . . . . . . . 10 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
3534cjcld 13917 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → (∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ)
36 simpl 473 . . . . . . . . 9 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → 𝑢 ∈ ℋ)
37 hvmulcl 27840 . . . . . . . . 9 (((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3835, 36, 37syl2anc 692 . . . . . . . 8 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
3938adantll 749 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ)
40 hvmulcl 27840 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
4126, 40sylan 488 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · 𝑣) ∈ ℋ)
423ffvelrni 6344 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ℋ → (𝑇𝑣) ∈ ℂ)
43 hvmulcl 27840 . . . . . . . . . . . . . . . . . 18 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4442, 43sylan 488 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
4544ancoms 469 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · 𝑢) ∈ ℋ)
46 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
47 his2sub 27919 . . . . . . . . . . . . . . . 16 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ ∧ 𝑢 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4841, 45, 46, 47syl3anc 1324 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)))
4926adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
50 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
51 ax-his3 27911 . . . . . . . . . . . . . . . . 17 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5249, 50, 46, 51syl3anc 1324 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) ·ih 𝑢) = ((𝑇𝑢) · (𝑣 ·ih 𝑢)))
5342adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
54 ax-his3 27911 . . . . . . . . . . . . . . . . 17 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5553, 46, 46, 54syl3anc 1324 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑣) · 𝑢) ·ih 𝑢) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
5652, 55oveq12d 6653 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) ·ih 𝑢) − (((𝑇𝑣) · 𝑢) ·ih 𝑢)) = (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
5748, 56eqtr2d 2655 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
5857adantll 749 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢))
59 hvsubcl 27844 . . . . . . . . . . . . . . . . . 18 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
6041, 45, 59syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ)
612lnfnsubi 28875 . . . . . . . . . . . . . . . . . . 19 ((((𝑇𝑢) · 𝑣) ∈ ℋ ∧ ((𝑇𝑣) · 𝑢) ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
6241, 45, 61syl2anc 692 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))))
632lnfnmuli 28873 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
6426, 63sylan 488 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑢) · 𝑣)) = ((𝑇𝑢) · (𝑇𝑣)))
652lnfnmuli 28873 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑣) · (𝑇𝑢)))
66 mulcom 10007 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑇𝑣) ∈ ℂ ∧ (𝑇𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6726, 66sylan2 491 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → ((𝑇𝑣) · (𝑇𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6865, 67eqtrd 2654 . . . . . . . . . . . . . . . . . . . . 21 (((𝑇𝑣) ∈ ℂ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
6942, 68sylan 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7069ancoms 469 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘((𝑇𝑣) · 𝑢)) = ((𝑇𝑢) · (𝑇𝑣)))
7164, 70oveq12d 6653 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇‘((𝑇𝑢) · 𝑣)) − (𝑇‘((𝑇𝑣) · 𝑢))) = (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))))
72 mulcl 10005 . . . . . . . . . . . . . . . . . . . 20 (((𝑇𝑢) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7326, 42, 72syl2an 494 . . . . . . . . . . . . . . . . . . 19 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑇𝑣)) ∈ ℂ)
7473subidd 10365 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑇𝑣)) − ((𝑇𝑢) · (𝑇𝑣))) = 0)
7562, 71, 743eqtrd 2658 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)
76 elnlfn 28757 . . . . . . . . . . . . . . . . . 18 (𝑇: ℋ⟶ℂ → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0)))
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17 ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ↔ ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ ℋ ∧ (𝑇‘(((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢))) = 0))
7860, 75, 77sylanbrc 697 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇))
796chssii 28058 . . . . . . . . . . . . . . . . 17 (null‘𝑇) ⊆ ℋ
80 ocorth 28120 . . . . . . . . . . . . . . . . 17 ((null‘𝑇) ⊆ ℋ → (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0))
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16 (((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ∈ (null‘𝑇) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8278, 81sylan 488 . . . . . . . . . . . . . . 15 (((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ 𝑢 ∈ (⊥‘(null‘𝑇))) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8382ancoms 469 . . . . . . . . . . . . . 14 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ (𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ)) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8483anassrs 679 . . . . . . . . . . . . 13 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · 𝑣) − ((𝑇𝑣) · 𝑢)) ·ih 𝑢) = 0)
8558, 84eqtrd 2654 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0)
86 hicl 27907 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8786ancoms 469 . . . . . . . . . . . . . . 15 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
8849, 87mulcld 10045 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
89 mulcl 10005 . . . . . . . . . . . . . . 15 (((𝑇𝑣) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ∈ ℂ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9042, 29, 89syl2anr 495 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((𝑇𝑣) · (𝑢 ·ih 𝑢)) ∈ ℂ)
9188, 90subeq0ad 10387 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9291adantll 749 . . . . . . . . . . . 12 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) − ((𝑇𝑣) · (𝑢 ·ih 𝑢))) = 0 ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
9385, 92mpbid 222 . . . . . . . . . . 11 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9493adantlr 750 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢)))
9588adantlr 750 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ)
9642adantl 482 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) ∈ ℂ)
9730, 33jca 554 . . . . . . . . . . . . 13 ((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
9897adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0))
99 divmul3 10675 . . . . . . . . . . . 12 ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) ∈ ℂ ∧ (𝑇𝑣) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10095, 96, 98, 99syl3anc 1324 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
101100adantlll 753 . . . . . . . . . 10 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣) ↔ ((𝑇𝑢) · (𝑣 ·ih 𝑢)) = ((𝑇𝑣) · (𝑢 ·ih 𝑢))))
10294, 101mpbird 247 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑇𝑣))
10327adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑢) ∈ ℂ)
10487adantlr 750 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih 𝑢) ∈ ℂ)
105 div23 10689 . . . . . . . . . . . 12 (((𝑇𝑢) ∈ ℂ ∧ (𝑣 ·ih 𝑢) ∈ ℂ ∧ ((𝑢 ·ih 𝑢) ∈ ℂ ∧ (𝑢 ·ih 𝑢) ≠ 0)) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
106103, 104, 98, 105syl3anc 1324 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
10734adantr 481 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → ((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ)
108 simpr 477 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑣 ∈ ℋ)
109 simpll 789 . . . . . . . . . . . 12 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → 𝑢 ∈ ℋ)
110 his52 27914 . . . . . . . . . . . 12 ((((𝑇𝑢) / (𝑢 ·ih 𝑢)) ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
111107, 108, 109, 110syl3anc 1324 . . . . . . . . . . 11 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)) = (((𝑇𝑢) / (𝑢 ·ih 𝑢)) · (𝑣 ·ih 𝑢)))
112106, 111eqtr4d 2657 . . . . . . . . . 10 (((𝑢 ∈ ℋ ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
113112adantlll 753 . . . . . . . . 9 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (((𝑇𝑢) · (𝑣 ·ih 𝑢)) / (𝑢 ·ih 𝑢)) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
114102, 113eqtr3d 2656 . . . . . . . 8 ((((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) ∧ 𝑣 ∈ ℋ) → (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
115114ralrimiva 2963 . . . . . . 7 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
116 oveq2 6643 . . . . . . . . . 10 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (𝑣 ·ih 𝑤) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢)))
117116eqeq2d 2630 . . . . . . . . 9 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → ((𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
118117ralbidv 2983 . . . . . . . 8 (𝑤 = ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) → (∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤) ↔ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))))
119118rspcev 3304 . . . . . . 7 ((((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢) ∈ ℋ ∧ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih ((∗‘((𝑇𝑢) / (𝑢 ·ih 𝑢))) · 𝑢))) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12039, 115, 119syl2anc 692 . . . . . 6 (((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) ∧ 𝑢 ≠ 0) → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
121120ex 450 . . . . 5 ((𝑢 ∈ (⊥‘(null‘𝑇)) ∧ 𝑢 ∈ ℋ) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
12225, 121mpdan 701 . . . 4 (𝑢 ∈ (⊥‘(null‘𝑇)) → (𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)))
123122rexlimiv 3023 . . 3 (∃𝑢 ∈ (⊥‘(null‘𝑇))𝑢 ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12424, 123sylbi 207 . 2 ((⊥‘(null‘𝑇)) ≠ 0 → ∃𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤))
12522, 124pm2.61ine 2874 1 𝑤 ∈ ℋ ∀𝑣 ∈ ℋ (𝑇𝑣) = (𝑣 ·ih 𝑤)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567  wf 5872  cfv 5876  (class class class)co 6635  cc 9919  0cc0 9921   · cmul 9926  cmin 10251   / cdiv 10669  ccj 13817  chil 27746   · csm 27748   ·ih csp 27749  0c0v 27751   cmv 27752  cort 27757  0c0h 27762  nullcnl 27779  ContFnccnfn 27780  LinFnclf 27781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001  ax-hilex 27826  ax-hfvadd 27827  ax-hvcom 27828  ax-hvass 27829  ax-hv0cl 27830  ax-hvaddid 27831  ax-hfvmul 27832  ax-hvmulid 27833  ax-hvmulass 27834  ax-hvdistr1 27835  ax-hvdistr2 27836  ax-hvmul0 27837  ax-hfi 27906  ax-his1 27909  ax-his2 27910  ax-his3 27911  ax-his4 27912  ax-hcompl 28029
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-omul 7550  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-acn 8753  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-rlim 14201  df-sum 14398  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-cn 21012  df-cnp 21013  df-lm 21014  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cfil 23034  df-cau 23035  df-cmet 23036  df-grpo 27317  df-gid 27318  df-ginv 27319  df-gdiv 27320  df-ablo 27369  df-vc 27384  df-nv 27417  df-va 27420  df-ba 27421  df-sm 27422  df-0v 27423  df-vs 27424  df-nmcv 27425  df-ims 27426  df-dip 27526  df-ssp 27547  df-ph 27638  df-cbn 27689  df-hnorm 27795  df-hba 27796  df-hvsub 27798  df-hlim 27799  df-hcau 27800  df-sh 28034  df-ch 28048  df-oc 28079  df-ch0 28080  df-nlfn 28675  df-cnfn 28676  df-lnfn 28677
This theorem is referenced by:  riesz4i  28892  riesz1  28894
  Copyright terms: Public domain W3C validator