Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riin0 Structured version   Visualization version   GIF version

Theorem riin0 4626
 Description: Relative intersection of an empty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riin0 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riin0
StepHypRef Expression
1 iineq1 4567 . . 3 (𝑋 = ∅ → 𝑥𝑋 𝑆 = 𝑥 ∈ ∅ 𝑆)
21ineq2d 3847 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = (𝐴 𝑥 ∈ ∅ 𝑆))
3 0iin 4610 . . . 4 𝑥 ∈ ∅ 𝑆 = V
43ineq2i 3844 . . 3 (𝐴 𝑥 ∈ ∅ 𝑆) = (𝐴 ∩ V)
5 inv1 4003 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2673 . 2 (𝐴 𝑥 ∈ ∅ 𝑆) = 𝐴
72, 6syl6eq 2701 1 (𝑋 = ∅ → (𝐴 𝑥𝑋 𝑆) = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523  Vcvv 3231   ∩ cin 3606  ∅c0 3948  ∩ ciin 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-dif 3610  df-in 3614  df-ss 3621  df-nul 3949  df-iin 4555 This theorem is referenced by:  riinrab  4628  riiner  7863  mreriincl  16305  riinopn  20761  riincld  20896  fnemeet2  32487  pmapglb2N  35375  pmapglb2xN  35376
 Copyright terms: Public domain W3C validator