MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinn0 Structured version   Visualization version   GIF version

Theorem riinn0 4627
Description: Relative intersection of a nonempty family. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinn0 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem riinn0
StepHypRef Expression
1 incom 3838 . 2 (𝐴 𝑥𝑋 𝑆) = ( 𝑥𝑋 𝑆𝐴)
2 r19.2z 4093 . . . . 5 ((𝑋 ≠ ∅ ∧ ∀𝑥𝑋 𝑆𝐴) → ∃𝑥𝑋 𝑆𝐴)
32ancoms 468 . . . 4 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ∃𝑥𝑋 𝑆𝐴)
4 iinss 4603 . . . 4 (∃𝑥𝑋 𝑆𝐴 𝑥𝑋 𝑆𝐴)
53, 4syl 17 . . 3 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → 𝑥𝑋 𝑆𝐴)
6 df-ss 3621 . . 3 ( 𝑥𝑋 𝑆𝐴 ↔ ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
75, 6sylib 208 . 2 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → ( 𝑥𝑋 𝑆𝐴) = 𝑥𝑋 𝑆)
81, 7syl5eq 2697 1 ((∀𝑥𝑋 𝑆𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 𝑆) = 𝑥𝑋 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wne 2823  wral 2941  wrex 2942  cin 3606  wss 3607  c0 3948   ciin 4553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-in 3614  df-ss 3621  df-nul 3949  df-iin 4555
This theorem is referenced by:  riinrab  4628  riiner  7863  mreriincl  16305  riinopn  20761  alexsublem  21895  fnemeet1  32486
  Copyright terms: Public domain W3C validator