Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinopn Structured version   Visualization version   GIF version

Theorem riinopn 20653
 Description: A finite indexed relative intersection of open sets is open. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
riinopn ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem riinopn
StepHypRef Expression
1 riin0 4567 . . . 4 (𝐴 = ∅ → (𝑋 𝑥𝐴 𝐵) = 𝑋)
21adantl 482 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑋)
3 simpl1 1062 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝐽 ∈ Top)
4 1open.1 . . . . 5 𝑋 = 𝐽
54topopn 20651 . . . 4 (𝐽 ∈ Top → 𝑋𝐽)
63, 5syl 17 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → 𝑋𝐽)
72, 6eqeltrd 2698 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 = ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
84eltopss 20652 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵𝐽) → 𝐵𝑋)
98ex 450 . . . . . . 7 (𝐽 ∈ Top → (𝐵𝐽𝐵𝑋))
109adantr 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐵𝐽𝐵𝑋))
1110ralimdv 2959 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (∀𝑥𝐴 𝐵𝐽 → ∀𝑥𝐴 𝐵𝑋))
12113impia 1258 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → ∀𝑥𝐴 𝐵𝑋)
13 riinn0 4568 . . . 4 ((∀𝑥𝐴 𝐵𝑋𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
1412, 13sylan 488 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) = 𝑥𝐴 𝐵)
15 iinopn 20647 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵𝐽)) → 𝑥𝐴 𝐵𝐽)
16153exp2 1282 . . . . 5 (𝐽 ∈ Top → (𝐴 ∈ Fin → (𝐴 ≠ ∅ → (∀𝑥𝐴 𝐵𝐽 𝑥𝐴 𝐵𝐽))))
1716com34 91 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ Fin → (∀𝑥𝐴 𝐵𝐽 → (𝐴 ≠ ∅ → 𝑥𝐴 𝐵𝐽))))
18173imp1 1277 . . 3 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → 𝑥𝐴 𝐵𝐽)
1914, 18eqeltrd 2698 . 2 (((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) ∧ 𝐴 ≠ ∅) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
207, 19pm2.61dane 2877 1 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 𝐵𝐽) → (𝑋 𝑥𝐴 𝐵) ∈ 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2908   ∩ cin 3559   ⊆ wss 3560  ∅c0 3897  ∪ cuni 4409  ∩ ciin 4493  Fincfn 7915  Topctop 20638 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-fin 7919  df-top 20639 This theorem is referenced by:  rintopn  20654  iuncld  20789
 Copyright terms: Public domain W3C validator