MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ring1eq0 Structured version   Visualization version   GIF version

Theorem ring1eq0 19269
Description: If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
ring1eq0.b 𝐵 = (Base‘𝑅)
ring1eq0.u 1 = (1r𝑅)
ring1eq0.z 0 = (0g𝑅)
Assertion
Ref Expression
ring1eq0 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))

Proof of Theorem ring1eq0
StepHypRef Expression
1 simpr 485 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 1 = 0 )
21oveq1d 7160 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑋))
31oveq1d 7160 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑌))
4 simpl1 1183 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑅 ∈ Ring)
5 simpl2 1184 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋𝐵)
6 ring1eq0.b . . . . . . . 8 𝐵 = (Base‘𝑅)
7 eqid 2818 . . . . . . . 8 (.r𝑅) = (.r𝑅)
8 ring1eq0.z . . . . . . . 8 0 = (0g𝑅)
96, 7, 8ringlz 19266 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (.r𝑅)𝑋) = 0 )
104, 5, 9syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = 0 )
11 simpl3 1185 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑌𝐵)
126, 7, 8ringlz 19266 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 0 (.r𝑅)𝑌) = 0 )
134, 11, 12syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑌) = 0 )
1410, 13eqtr4d 2856 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 0 (.r𝑅)𝑋) = ( 0 (.r𝑅)𝑌))
153, 14eqtr4d 2856 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = ( 0 (.r𝑅)𝑋))
162, 15eqtr4d 2856 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = ( 1 (.r𝑅)𝑌))
17 ring1eq0.u . . . . 5 1 = (1r𝑅)
186, 7, 17ringlidm 19250 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 (.r𝑅)𝑋) = 𝑋)
194, 5, 18syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑋) = 𝑋)
206, 7, 17ringlidm 19250 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 (.r𝑅)𝑌) = 𝑌)
214, 11, 20syl2anc 584 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → ( 1 (.r𝑅)𝑌) = 𝑌)
2216, 19, 213eqtr3d 2861 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) ∧ 1 = 0 ) → 𝑋 = 𝑌)
2322ex 413 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  .rcmulr 16554  0gc0g 16701  1rcur 19180  Ringcrg 19226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-mgp 19169  df-ur 19181  df-ring 19228
This theorem is referenced by:  ring1ne0  19270  abvneg  19534  isnzr2  19964  ringelnzr  19967  nrginvrcn  23228
  Copyright terms: Public domain W3C validator