Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccat Structured version   Visualization version   GIF version

Theorem ringccat 41795
 Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020.) (Revised by AV, 9-Mar-2020.)
Hypothesis
Ref Expression
ringccat.c 𝐶 = (RingCat‘𝑈)
Assertion
Ref Expression
ringccat (𝑈𝑉𝐶 ∈ Cat)

Proof of Theorem ringccat
StepHypRef Expression
1 ringccat.c . . 3 𝐶 = (RingCat‘𝑈)
2 id 22 . . 3 (𝑈𝑉𝑈𝑉)
3 eqidd 2622 . . 3 (𝑈𝑉 → (𝑈 ∩ Ring) = (𝑈 ∩ Ring))
4 eqidd 2622 . . 3 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
51, 2, 3, 4ringcval 41779 . 2 (𝑈𝑉𝐶 = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))))
6 eqid 2621 . . 3 ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) = ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))))
7 eqid 2621 . . . 4 (ExtStrCat‘𝑈) = (ExtStrCat‘𝑈)
8 eqidd 2622 . . . 4 (𝑈𝑉 → (Ring ∩ 𝑈) = (Ring ∩ 𝑈))
9 incom 3803 . . . . . . 7 (𝑈 ∩ Ring) = (Ring ∩ 𝑈)
109a1i 11 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Ring) = (Ring ∩ 𝑈))
1110sqxpeqd 5139 . . . . 5 (𝑈𝑉 → ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)) = ((Ring ∩ 𝑈) × (Ring ∩ 𝑈)))
1211reseq2d 5394 . . . 4 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) = ( RingHom ↾ ((Ring ∩ 𝑈) × (Ring ∩ 𝑈))))
137, 2, 8, 12rhmsubcsetc 41794 . . 3 (𝑈𝑉 → ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring))) ∈ (Subcat‘(ExtStrCat‘𝑈)))
146, 13subccat 16502 . 2 (𝑈𝑉 → ((ExtStrCat‘𝑈) ↾cat ( RingHom ↾ ((𝑈 ∩ Ring) × (𝑈 ∩ Ring)))) ∈ Cat)
155, 14eqeltrd 2700 1 (𝑈𝑉𝐶 ∈ Cat)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1482   ∈ wcel 1989   ∩ cin 3571   × cxp 5110   ↾ cres 5114  ‘cfv 5886  (class class class)co 6647  Catccat 16319   ↾cat cresc 16462  ExtStrCatcestrc 16756  Ringcrg 18541   RingHom crh 18706  RingCatcringc 41774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-hom 15960  df-cco 15961  df-0g 16096  df-cat 16323  df-cid 16324  df-homf 16325  df-ssc 16464  df-resc 16465  df-subc 16466  df-estrc 16757  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-mhm 17329  df-grp 17419  df-ghm 17652  df-mgp 18484  df-ur 18496  df-ring 18543  df-rnghom 18709  df-ringc 41776 This theorem is referenced by:  ringcsect  41802  ringcinv  41803  ringciso  41804  funcringcsetcALTV2  41816  irinitoringc  41840  zrtermoringc  41841  zrninitoringc  41842  nzerooringczr  41843  srhmsubc  41847
 Copyright terms: Public domain W3C validator