Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringccoALTV Structured version   Visualization version   GIF version

Theorem ringccoALTV 41355
 Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringcbasALTV.c 𝐶 = (RingCatALTV‘𝑈)
ringcbasALTV.b 𝐵 = (Base‘𝐶)
ringcbasALTV.u (𝜑𝑈𝑉)
ringccoALTV.o · = (comp‘𝐶)
ringccoALTV.x (𝜑𝑋𝐵)
ringccoALTV.y (𝜑𝑌𝐵)
ringccoALTV.z (𝜑𝑍𝐵)
ringccoALTV.f (𝜑𝐹 ∈ (𝑋 RingHom 𝑌))
ringccoALTV.g (𝜑𝐺 ∈ (𝑌 RingHom 𝑍))
Assertion
Ref Expression
ringccoALTV (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))

Proof of Theorem ringccoALTV
Dummy variables 𝑓 𝑔 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringcbasALTV.c . . . 4 𝐶 = (RingCatALTV‘𝑈)
2 ringcbasALTV.b . . . 4 𝐵 = (Base‘𝐶)
3 ringcbasALTV.u . . . 4 (𝜑𝑈𝑉)
4 ringccoALTV.o . . . 4 · = (comp‘𝐶)
51, 2, 3, 4ringccofvalALTV 41354 . . 3 (𝜑· = (𝑣 ∈ (𝐵 × 𝐵), 𝑧𝐵 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓))))
6 simprl 793 . . . . . . 7 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑣 = ⟨𝑋, 𝑌⟩)
76fveq2d 6154 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = (2nd ‘⟨𝑋, 𝑌⟩))
8 ringccoALTV.x . . . . . . . 8 (𝜑𝑋𝐵)
9 ringccoALTV.y . . . . . . . 8 (𝜑𝑌𝐵)
10 op2ndg 7129 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
118, 9, 10syl2anc 692 . . . . . . 7 (𝜑 → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
1211adantr 481 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd ‘⟨𝑋, 𝑌⟩) = 𝑌)
137, 12eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (2nd𝑣) = 𝑌)
14 simprr 795 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍)
1513, 14oveq12d 6625 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((2nd𝑣) RingHom 𝑧) = (𝑌 RingHom 𝑍))
166fveq2d 6154 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = (1st ‘⟨𝑋, 𝑌⟩))
17 op1stg 7128 . . . . . . . 8 ((𝑋𝐵𝑌𝐵) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
188, 9, 17syl2anc 692 . . . . . . 7 (𝜑 → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
1918adantr 481 . . . . . 6 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2016, 19eqtrd 2655 . . . . 5 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (1st𝑣) = 𝑋)
2120, 13oveq12d 6625 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → ((1st𝑣) RingHom (2nd𝑣)) = (𝑋 RingHom 𝑌))
22 eqidd 2622 . . . 4 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔𝑓) = (𝑔𝑓))
2315, 21, 22mpt2eq123dv 6673 . . 3 ((𝜑 ∧ (𝑣 = ⟨𝑋, 𝑌⟩ ∧ 𝑧 = 𝑍)) → (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)))
24 opelxpi 5110 . . . 4 ((𝑋𝐵𝑌𝐵) → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
258, 9, 24syl2anc 692 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
26 ringccoALTV.z . . 3 (𝜑𝑍𝐵)
27 ovex 6635 . . . . 5 (𝑌 RingHom 𝑍) ∈ V
28 ovex 6635 . . . . 5 (𝑋 RingHom 𝑌) ∈ V
2927, 28mpt2ex 7195 . . . 4 (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)) ∈ V
3029a1i 11 . . 3 (𝜑 → (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)) ∈ V)
315, 23, 25, 26, 30ovmpt2d 6744 . 2 (𝜑 → (⟨𝑋, 𝑌· 𝑍) = (𝑔 ∈ (𝑌 RingHom 𝑍), 𝑓 ∈ (𝑋 RingHom 𝑌) ↦ (𝑔𝑓)))
32 simprl 793 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑔 = 𝐺)
33 simprr 795 . . 3 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → 𝑓 = 𝐹)
3432, 33coeq12d 5248 . 2 ((𝜑 ∧ (𝑔 = 𝐺𝑓 = 𝐹)) → (𝑔𝑓) = (𝐺𝐹))
35 ringccoALTV.g . 2 (𝜑𝐺 ∈ (𝑌 RingHom 𝑍))
36 ringccoALTV.f . 2 (𝜑𝐹 ∈ (𝑋 RingHom 𝑌))
37 coexg 7067 . . 3 ((𝐺 ∈ (𝑌 RingHom 𝑍) ∧ 𝐹 ∈ (𝑋 RingHom 𝑌)) → (𝐺𝐹) ∈ V)
3835, 36, 37syl2anc 692 . 2 (𝜑 → (𝐺𝐹) ∈ V)
3931, 34, 35, 36, 38ovmpt2d 6744 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = (𝐺𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⟨cop 4156   × cxp 5074   ∘ ccom 5080  ‘cfv 5849  (class class class)co 6607   ↦ cmpt2 6609  1st c1st 7114  2nd c2nd 7115  Basecbs 15784  compcco 15877   RingHom crh 18636  RingCatALTVcringcALTV 41308 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-1st 7116  df-2nd 7117  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-1o 7508  df-oadd 7512  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-fin 7906  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-2 11026  df-3 11027  df-4 11028  df-5 11029  df-6 11030  df-7 11031  df-8 11032  df-9 11033  df-n0 11240  df-z 11325  df-dec 11441  df-uz 11635  df-fz 12272  df-struct 15786  df-ndx 15787  df-slot 15788  df-base 15789  df-hom 15890  df-cco 15891  df-ringcALTV 41310 This theorem is referenced by:  ringccatidALTV  41356  ringcsectALTV  41359  funcringcsetclem9ALTV  41371
 Copyright terms: Public domain W3C validator