![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringcidALTV | Structured version Visualization version GIF version |
Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringccatALTV.c | ⊢ 𝐶 = (RingCatALTV‘𝑈) |
ringcidALTV.b | ⊢ 𝐵 = (Base‘𝐶) |
ringcidALTV.o | ⊢ 1 = (Id‘𝐶) |
ringcidALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
ringcidALTV.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringcidALTV.s | ⊢ 𝑆 = (Base‘𝑋) |
Ref | Expression |
---|---|
ringcidALTV | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringcidALTV.o | . . . 4 ⊢ 1 = (Id‘𝐶) | |
2 | ringcidALTV.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | ringccatALTV.c | . . . . . . 7 ⊢ 𝐶 = (RingCatALTV‘𝑈) | |
4 | ringcidALTV.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 3, 4 | ringccatidALTV 42377 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥))))) |
7 | 6 | simprd 478 | . . . 4 ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
8 | 1, 7 | syl5eq 2697 | . . 3 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝐵 ↦ ( I ↾ (Base‘𝑥)))) |
9 | fveq2 6229 | . . . . 5 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (Base‘𝑥) = (Base‘𝑋)) |
11 | 10 | reseq2d 5428 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋))) |
12 | ringcidALTV.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
13 | fvex 6239 | . . . 4 ⊢ (Base‘𝑋) ∈ V | |
14 | resiexg 7144 | . . . 4 ⊢ ((Base‘𝑋) ∈ V → ( I ↾ (Base‘𝑋)) ∈ V) | |
15 | 13, 14 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V) |
16 | 8, 11, 12, 15 | fvmptd 6327 | . 2 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) |
17 | ringcidALTV.s | . . 3 ⊢ 𝑆 = (Base‘𝑋) | |
18 | 17 | reseq2i 5425 | . 2 ⊢ ( I ↾ 𝑆) = ( I ↾ (Base‘𝑋)) |
19 | 16, 18 | syl6eqr 2703 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ↦ cmpt 4762 I cid 5052 ↾ cres 5145 ‘cfv 5926 Basecbs 15904 Catccat 16372 Idccid 16373 RingCatALTVcringcALTV 42329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-hom 16013 df-cco 16014 df-0g 16149 df-cat 16376 df-cid 16377 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-grp 17472 df-ghm 17705 df-mgp 18536 df-ur 18548 df-ring 18595 df-rnghom 18763 df-ringcALTV 42331 |
This theorem is referenced by: ringcsectALTV 42380 funcringcsetclem7ALTV 42390 srhmsubcALTV 42419 |
Copyright terms: Public domain | W3C validator |