MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringdir Structured version   Visualization version   GIF version

Theorem ringdir 19246
Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
ringdi.b 𝐵 = (Base‘𝑅)
ringdi.p + = (+g𝑅)
ringdi.t · = (.r𝑅)
Assertion
Ref Expression
ringdir ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))

Proof of Theorem ringdir
StepHypRef Expression
1 ringdi.b . . 3 𝐵 = (Base‘𝑅)
2 ringdi.p . . 3 + = (+g𝑅)
3 ringdi.t . . 3 · = (.r𝑅)
41, 2, 3ringi 19239 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
54simprd 496 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  .rcmulr 16554  Ringcrg 19226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-nul 5201
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-iota 6307  df-fv 6356  df-ov 7148  df-ring 19228
This theorem is referenced by:  ringadd2  19254  rngo2times  19255  ringcom  19258  ringlz  19266  ringnegl  19273  rngsubdir  19279  mulgass2  19280  ringrghm  19284  prdsringd  19291  imasring  19298  opprring  19310  issubrg2  19484  cntzsubr  19497  sralmod  19888  psrlmod  20109  psrdir  20115  evlslem1  20223  frlmphl  20853  mamudi  20940  mdetrlin  21139  dvrdir  30788  lflvscl  36093  lflvsdi1  36094  dvhlveclem  38124  lidlrng  44126
  Copyright terms: Public domain W3C validator