MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnz1ne0 Structured version   Visualization version   GIF version

Theorem ringinvnz1ne0 19273
Description: In a unitary ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
Assertion
Ref Expression
ringinvnz1ne0 (𝜑 → (𝑋010 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnz1ne0
StepHypRef Expression
1 oveq2 7153 . . . . 5 (𝑋 = 0 → (𝑎 · 𝑋) = (𝑎 · 0 ))
2 ringinvnzdiv.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.b . . . . . . . 8 𝐵 = (Base‘𝑅)
4 ringinvnzdiv.t . . . . . . . 8 · = (.r𝑅)
5 ringinvnzdiv.z . . . . . . . 8 0 = (0g𝑅)
63, 4, 5ringrz 19269 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
72, 6sylan 580 . . . . . 6 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
8 eqeq12 2835 . . . . . . . 8 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) ↔ 1 = 0 ))
98biimpd 230 . . . . . . 7 (((𝑎 · 𝑋) = 1 ∧ (𝑎 · 0 ) = 0 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
109ex 413 . . . . . 6 ((𝑎 · 𝑋) = 1 → ((𝑎 · 0 ) = 0 → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 )))
117, 10mpan9 507 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) = (𝑎 · 0 ) → 1 = 0 ))
121, 11syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
13 oveq2 7153 . . . . 5 ( 1 = 0 → (𝑋 · 1 ) = (𝑋 · 0 ))
14 ringinvnzdiv.x . . . . . . 7 (𝜑𝑋𝐵)
15 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
163, 4, 15ringridm 19253 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
173, 4, 5ringrz 19269 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
1816, 17eqeq12d 2837 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) ↔ 𝑋 = 0 ))
1918biimpd 230 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
202, 14, 19syl2anc 584 . . . . . 6 (𝜑 → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2120ad2antrr 722 . . . . 5 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑋 · 1 ) = (𝑋 · 0 ) → 𝑋 = 0 ))
2213, 21syl5 34 . . . 4 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 = 0𝑋 = 0 ))
2312, 22impbid 213 . . 3 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑋 = 01 = 0 ))
24 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2523, 24r19.29a 3289 . 2 (𝜑 → (𝑋 = 01 = 0 ))
2625necon3bid 3060 1 (𝜑 → (𝑋010 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3016  wrex 3139  cfv 6349  (class class class)co 7145  Basecbs 16473  .rcmulr 16556  0gc0g 16703  1rcur 19182  Ringcrg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-plusg 16568  df-0g 16705  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-grp 18046  df-mgp 19171  df-ur 19183  df-ring 19230
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator