MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringinvnzdiv Structured version   Visualization version   GIF version

Theorem ringinvnzdiv 18813
Description: In a unitary ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
ringinvnzdiv.b 𝐵 = (Base‘𝑅)
ringinvnzdiv.t · = (.r𝑅)
ringinvnzdiv.u 1 = (1r𝑅)
ringinvnzdiv.z 0 = (0g𝑅)
ringinvnzdiv.r (𝜑𝑅 ∈ Ring)
ringinvnzdiv.x (𝜑𝑋𝐵)
ringinvnzdiv.a (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
ringinvnzdiv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ringinvnzdiv (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Distinct variable groups:   𝑋,𝑎   0 ,𝑎   1 ,𝑎   · ,𝑎   𝜑,𝑎   𝑌,𝑎
Allowed substitution hints:   𝐵(𝑎)   𝑅(𝑎)

Proof of Theorem ringinvnzdiv
StepHypRef Expression
1 ringinvnzdiv.a . . 3 (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )
2 ringinvnzdiv.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
3 ringinvnzdiv.y . . . . . . . . 9 (𝜑𝑌𝐵)
4 ringinvnzdiv.b . . . . . . . . . 10 𝐵 = (Base‘𝑅)
5 ringinvnzdiv.t . . . . . . . . . 10 · = (.r𝑅)
6 ringinvnzdiv.u . . . . . . . . . 10 1 = (1r𝑅)
74, 5, 6ringlidm 18791 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑌𝐵) → ( 1 · 𝑌) = 𝑌)
82, 3, 7syl2anc 696 . . . . . . . 8 (𝜑 → ( 1 · 𝑌) = 𝑌)
98eqcomd 2766 . . . . . . 7 (𝜑𝑌 = ( 1 · 𝑌))
109ad3antrrr 768 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = ( 1 · 𝑌))
11 oveq1 6821 . . . . . . . . . 10 ( 1 = (𝑎 · 𝑋) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1211eqcoms 2768 . . . . . . . . 9 ((𝑎 · 𝑋) = 1 → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
1312adantl 473 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = ((𝑎 · 𝑋) · 𝑌))
142adantr 472 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → 𝑅 ∈ Ring)
15 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑎𝐵)
16 ringinvnzdiv.x . . . . . . . . . . . . 13 (𝜑𝑋𝐵)
1716adantr 472 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑋𝐵)
183adantr 472 . . . . . . . . . . . 12 ((𝜑𝑎𝐵) → 𝑌𝐵)
1915, 17, 183jca 1123 . . . . . . . . . . 11 ((𝜑𝑎𝐵) → (𝑎𝐵𝑋𝐵𝑌𝐵))
2014, 19jca 555 . . . . . . . . . 10 ((𝜑𝑎𝐵) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
2120adantr 472 . . . . . . . . 9 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)))
224, 5ringass 18784 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑎𝐵𝑋𝐵𝑌𝐵)) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2321, 22syl 17 . . . . . . . 8 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ((𝑎 · 𝑋) · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2413, 23eqtrd 2794 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
2524adantr 472 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → ( 1 · 𝑌) = (𝑎 · (𝑋 · 𝑌)))
26 oveq2 6822 . . . . . . 7 ((𝑋 · 𝑌) = 0 → (𝑎 · (𝑋 · 𝑌)) = (𝑎 · 0 ))
27 ringinvnzdiv.z . . . . . . . . . 10 0 = (0g𝑅)
284, 5, 27ringrz 18808 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑎𝐵) → (𝑎 · 0 ) = 0 )
292, 28sylan 489 . . . . . . . 8 ((𝜑𝑎𝐵) → (𝑎 · 0 ) = 0 )
3029adantr 472 . . . . . . 7 (((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) → (𝑎 · 0 ) = 0 )
3126, 30sylan9eqr 2816 . . . . . 6 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → (𝑎 · (𝑋 · 𝑌)) = 0 )
3210, 25, 313eqtrd 2798 . . . . 5 ((((𝜑𝑎𝐵) ∧ (𝑎 · 𝑋) = 1 ) ∧ (𝑋 · 𝑌) = 0 ) → 𝑌 = 0 )
3332exp31 631 . . . 4 ((𝜑𝑎𝐵) → ((𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
3433rexlimdva 3169 . . 3 (𝜑 → (∃𝑎𝐵 (𝑎 · 𝑋) = 1 → ((𝑋 · 𝑌) = 0𝑌 = 0 )))
351, 34mpd 15 . 2 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
36 oveq2 6822 . . . 4 (𝑌 = 0 → (𝑋 · 𝑌) = (𝑋 · 0 ))
374, 5, 27ringrz 18808 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
382, 16, 37syl2anc 696 . . . 4 (𝜑 → (𝑋 · 0 ) = 0 )
3936, 38sylan9eqr 2816 . . 3 ((𝜑𝑌 = 0 ) → (𝑋 · 𝑌) = 0 )
4039ex 449 . 2 (𝜑 → (𝑌 = 0 → (𝑋 · 𝑌) = 0 ))
4135, 40impbid 202 1 (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wrex 3051  cfv 6049  (class class class)co 6814  Basecbs 16079  .rcmulr 16164  0gc0g 16322  1rcur 18721  Ringcrg 18767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-plusg 16176  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-mgp 18710  df-ur 18722  df-ring 18769
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator