Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringinvval Structured version   Visualization version   GIF version

Theorem ringinvval 29574
 Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ringinvval.b 𝐵 = (Base‘𝑅)
ringinvval.p = (.r𝑅)
ringinvval.o 1 = (1r𝑅)
ringinvval.n 𝑁 = (invr𝑅)
ringinvval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ringinvval ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = 1 ))
Distinct variable groups:   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   1 (𝑦)   (𝑦)   𝑁(𝑦)

Proof of Theorem ringinvval
StepHypRef Expression
1 ringinvval.u . . . . 5 𝑈 = (Unit‘𝑅)
2 eqid 2621 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
31, 2unitgrpbas 18587 . . . 4 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
4 fvex 6158 . . . . . 6 (Unit‘𝑅) ∈ V
51, 4eqeltri 2694 . . . . 5 𝑈 ∈ V
6 eqid 2621 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
7 ringinvval.p . . . . . . 7 = (.r𝑅)
86, 7mgpplusg 18414 . . . . . 6 = (+g‘(mulGrp‘𝑅))
92, 8ressplusg 15914 . . . . 5 (𝑈 ∈ V → = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
105, 9ax-mp 5 . . . 4 = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
11 eqid 2621 . . . 4 (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))
12 ringinvval.n . . . . 5 𝑁 = (invr𝑅)
131, 2, 12invrfval 18594 . . . 4 𝑁 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
143, 10, 11, 13grpinvval 17382 . . 3 (𝑋𝑈 → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
1514adantl 482 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
16 ringinvval.o . . . . . . 7 1 = (1r𝑅)
171, 2, 16unitgrpid 18590 . . . . . 6 (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1817adantr 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1918eqeq2d 2631 . . . 4 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → ((𝑦 𝑋) = 1 ↔ (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
2019riotabidva 6581 . . 3 (𝑅 ∈ Ring → (𝑦𝑈 (𝑦 𝑋) = 1 ) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
2120adantr 481 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑦𝑈 (𝑦 𝑋) = 1 ) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
2215, 21eqtr4d 2658 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = 1 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ‘cfv 5847  ℩crio 6564  (class class class)co 6604  Basecbs 15781   ↾s cress 15782  +gcplusg 15862  .rcmulr 15863  0gc0g 16021  mulGrpcmgp 18410  1rcur 18422  Ringcrg 18468  Unitcui 18560  invrcinvr 18592 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-mgp 18411  df-ur 18423  df-ring 18470  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator