![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringlghm | Structured version Visualization version GIF version |
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
ringlghm.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringlghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2651 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | ringgrp 18598 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 3 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | ringlghm.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
6 | 1, 5 | ringcl 18607 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1284 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
8 | eqid 2651 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) | |
9 | 7, 8 | fmptd 6425 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
10 | 3anass 1059 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
11 | 1, 2, 5 | ringdi 18612 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
12 | 10, 11 | sylan2br 492 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
13 | 12 | anassrs 681 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
14 | 1, 2 | ringacl 18624 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
15 | 14 | 3expb 1285 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
16 | 15 | adantlr 751 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
17 | oveq2 6698 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) | |
18 | ovex 6718 | . . . . 5 ⊢ (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ V | |
19 | 17, 8, 18 | fvmpt 6321 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
21 | oveq2 6698 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦)) | |
22 | ovex 6718 | . . . . . 6 ⊢ (𝑋 · 𝑦) ∈ V | |
23 | 21, 8, 22 | fvmpt 6321 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦)) |
24 | oveq2 6698 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧)) | |
25 | ovex 6718 | . . . . . 6 ⊢ (𝑋 · 𝑧) ∈ V | |
26 | 24, 8, 25 | fvmpt 6321 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧)) |
27 | 23, 26 | oveqan12d 6709 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
28 | 27 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
29 | 13, 20, 28 | 3eqtr4d 2695 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧))) |
30 | 1, 1, 2, 2, 4, 4, 9, 29 | isghmd 17716 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 .rcmulr 15989 Grpcgrp 17469 GrpHom cghm 17704 Ringcrg 18593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-plusg 16001 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-ghm 17705 df-mgp 18536 df-ring 18595 |
This theorem is referenced by: gsummulc2 18653 |
Copyright terms: Public domain | W3C validator |