Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlghm Structured version   Visualization version   GIF version

Theorem ringlghm 18650
 Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringlghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringlghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2651 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 18598 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . 5 · = (.r𝑅)
61, 5ringcl 18607 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1284 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
8 eqid 2651 . . 3 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
97, 8fmptd 6425 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
10 3anass 1059 . . . . 5 ((𝑋𝐵𝑦𝐵𝑧𝐵) ↔ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵)))
111, 2, 5ringdi 18612 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1210, 11sylan2br 492 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵))) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1312anassrs 681 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
141, 2ringacl 18624 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
15143expb 1285 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1615adantlr 751 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
17 oveq2 6698 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g𝑅)𝑧)))
18 ovex 6718 . . . . 5 (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ V
1917, 8, 18fvmpt 6321 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
2016, 19syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
21 oveq2 6698 . . . . . 6 (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦))
22 ovex 6718 . . . . . 6 (𝑋 · 𝑦) ∈ V
2321, 8, 22fvmpt 6321 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦))
24 oveq2 6698 . . . . . 6 (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧))
25 ovex 6718 . . . . . 6 (𝑋 · 𝑧) ∈ V
2624, 8, 25fvmpt 6321 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧))
2723, 26oveqan12d 6709 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2827adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2913, 20, 283eqtr4d 2695 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)))
301, 1, 2, 2, 4, 4, 9, 29isghmd 17716 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ↦ cmpt 4762  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Grpcgrp 17469   GrpHom cghm 17704  Ringcrg 18593 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-plusg 16001  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-ghm 17705  df-mgp 18536  df-ring 18595 This theorem is referenced by:  gsummulc2  18653
 Copyright terms: Public domain W3C validator