MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlz Structured version   Visualization version   GIF version

Theorem ringlz 19268
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b 𝐵 = (Base‘𝑅)
rngz.t · = (.r𝑅)
rngz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringlz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem ringlz
StepHypRef Expression
1 ringgrp 19233 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 rngz.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rngz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 18071 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2821 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 18073 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 585 . . . . 5 (𝑅 ∈ Ring → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq1d 7160 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
101, 4syl 17 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
1110adantr 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
12 simpr 485 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1311, 11, 123jca 1120 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
14 rngz.t . . . . 5 · = (.r𝑅)
152, 5, 14ringdir 19248 . . . 4 ((𝑅 ∈ Ring ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
1613, 15syldan 591 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
171adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
18 simpl 483 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
192, 14ringcl 19242 . . . . 5 ((𝑅 ∈ Ring ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2018, 11, 12, 19syl3anc 1363 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
212, 5, 3grprid 18074 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2221eqcomd 2827 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2317, 20, 22syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
249, 16, 233eqtr3d 2864 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
252, 5grplcan 18101 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2617, 20, 11, 20, 25syl13anc 1364 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2724, 26mpbid 233 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6349  (class class class)co 7145  Basecbs 16473  +gcplusg 16555  .rcmulr 16556  0gc0g 16703  Grpcgrp 18043  Ringcrg 19228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-plusg 16568  df-0g 16705  df-mgm 17842  df-sgrp 17891  df-mnd 17902  df-grp 18046  df-minusg 18047  df-mgp 19171  df-ring 19230
This theorem is referenced by:  ringsrg  19270  ring1eq0  19271  ringnegl  19275  mulgass2  19282  gsumdixp  19290  dvdsr01  19336  0unit  19361  irredn0  19384  drngmul0or  19454  cntzsubr  19499  cntzsdrg  19512  isabvd  19522  domneq0  20000  psrlidm  20113  mplsubrglem  20149  mplmonmul  20175  evlslem4  20218  evlslem3  20223  evlslem6  20224  coe1tmmul  20375  cply1mul  20392  frlmphllem  20854  mamulid  20980  dmatmul  21036  scmatscm  21052  1mavmul  21087  mdetdiaglem  21137  mdetr0  21144  mdegmullem  24601  coe1mul3  24622  fta1glem1  24688  dvdschrmulg  30786  rmfsupp2  30794  fedgmullem1  30925  lflsc0N  36101  hdmapinvlem3  38938  hdmapinvlem4  38939  zrrnghm  44086  zlidlring  44097  rmsupp0  44314  ply1mulgsumlem2  44339
  Copyright terms: Public domain W3C validator