MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaneg Structured version   Visualization version   GIF version

Theorem riotaneg 11614
Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.)
Hypothesis
Ref Expression
riotaneg.1 (𝑥 = -𝑦 → (𝜑𝜓))
Assertion
Ref Expression
riotaneg (∃!𝑥 ∈ ℝ 𝜑 → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem riotaneg
StepHypRef Expression
1 tru 1537 . 2
2 nfriota1 7115 . . . 4 𝑦(𝑦 ∈ ℝ 𝜓)
32nfneg 10876 . . 3 𝑦-(𝑦 ∈ ℝ 𝜓)
4 renegcl 10943 . . . 4 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
54adantl 484 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 simpr 487 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (𝑦 ∈ ℝ 𝜓) ∈ ℝ)
76renegcld 11061 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(𝑦 ∈ ℝ 𝜓) ∈ ℝ)
8 riotaneg.1 . . 3 (𝑥 = -𝑦 → (𝜑𝜓))
9 negeq 10872 . . 3 (𝑦 = (𝑦 ∈ ℝ 𝜓) → -𝑦 = -(𝑦 ∈ ℝ 𝜓))
10 renegcl 10943 . . . . 5 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
11 recn 10621 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
12 recn 10621 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
13 negcon2 10933 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
1411, 12, 13syl2an 597 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
1510, 14reuhyp 5313 . . . 4 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦)
1615adantl 484 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦)
173, 5, 7, 8, 9, 16riotaxfrd 7142 . 2 ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
181, 17mpan 688 1 (∃!𝑥 ∈ ℝ 𝜑 → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wtru 1534  wcel 2110  ∃!wreu 3140  crio 7107  cc 10529  cr 10530  -cneg 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator