Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaneg Structured version   Visualization version   GIF version

Theorem riotaneg 11214
 Description: The negative of the unique real such that 𝜑. (Contributed by NM, 13-Jun-2005.)
Hypothesis
Ref Expression
riotaneg.1 (𝑥 = -𝑦 → (𝜑𝜓))
Assertion
Ref Expression
riotaneg (∃!𝑥 ∈ ℝ 𝜑 → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem riotaneg
StepHypRef Expression
1 tru 1636 . 2
2 nfriota1 6782 . . . 4 𝑦(𝑦 ∈ ℝ 𝜓)
32nfneg 10489 . . 3 𝑦-(𝑦 ∈ ℝ 𝜓)
4 renegcl 10556 . . . 4 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
54adantl 473 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ) → -𝑦 ∈ ℝ)
6 simpr 479 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ 𝜓) ∈ ℝ) → (𝑦 ∈ ℝ 𝜓) ∈ ℝ)
76renegcld 10669 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ 𝜓) ∈ ℝ) → -(𝑦 ∈ ℝ 𝜓) ∈ ℝ)
8 riotaneg.1 . . 3 (𝑥 = -𝑦 → (𝜑𝜓))
9 negeq 10485 . . 3 (𝑦 = (𝑦 ∈ ℝ 𝜓) → -𝑦 = -(𝑦 ∈ ℝ 𝜓))
10 renegcl 10556 . . . . 5 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
11 recn 10238 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
12 recn 10238 . . . . . 6 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
13 negcon2 10546 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
1411, 12, 13syl2an 495 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
1510, 14reuhyp 5045 . . . 4 (𝑥 ∈ ℝ → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦)
1615adantl 473 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → ∃!𝑦 ∈ ℝ 𝑥 = -𝑦)
173, 5, 7, 8, 9, 16riotaxfrd 6806 . 2 ((⊤ ∧ ∃!𝑥 ∈ ℝ 𝜑) → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
181, 17mpan 708 1 (∃!𝑥 ∈ ℝ 𝜑 → (𝑥 ∈ ℝ 𝜑) = -(𝑦 ∈ ℝ 𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632  ⊤wtru 1633   ∈ wcel 2139  ∃!wreu 3052  ℩crio 6774  ℂcc 10146  ℝcr 10147  -cneg 10479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-ltxr 10291  df-sub 10480  df-neg 10481 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator