MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotassuni Structured version   Visualization version   GIF version

Theorem riotassuni 6688
Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotassuni (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotassuni
StepHypRef Expression
1 riotauni 6657 . . 3 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
2 ssrab2 3720 . . . . 5 {𝑥𝐴𝜑} ⊆ 𝐴
32unissi 4493 . . . 4 {𝑥𝐴𝜑} ⊆ 𝐴
4 ssun2 3810 . . . 4 𝐴 ⊆ (𝒫 𝐴 𝐴)
53, 4sstri 3645 . . 3 {𝑥𝐴𝜑} ⊆ (𝒫 𝐴 𝐴)
61, 5syl6eqss 3688 . 2 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
7 riotaund 6687 . . 3 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = ∅)
8 0ss 4005 . . 3 ∅ ⊆ (𝒫 𝐴 𝐴)
97, 8syl6eqss 3688 . 2 (¬ ∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴))
106, 9pm2.61i 176 1 (𝑥𝐴 𝜑) ⊆ (𝒫 𝐴 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  ∃!wreu 2943  {crab 2945  cun 3605  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468  crio 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-sn 4211  df-pr 4213  df-uni 4469  df-iota 5889  df-riota 6651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator